RECEIVED

MAY 0 8 2008

Department of Environmental Quality State Air Program



# NONPAREIL CORPORATION TIER I PERMIT APPLICATION

# SUBMITTED TO: Idaho Department of Environmental Quality 1410 NORTH HILTON BOISE, ID 83706

PREPARED BY:



7669 WEST RIVERSIDE DRIVE, SUITE 101 BOISE, IDAHO 83714

May 8, 2008

# TABLE OF CONTENTS

| 1.0        | Introduction and Overview                                                                                                                  | 1-1                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.1        | Introduction                                                                                                                               | 1-1                  |
| 1.2        | Project Overview                                                                                                                           |                      |
| 2.0        | Facility Classification                                                                                                                    | 2-1                  |
| 2.1        | Facility Description                                                                                                                       | 2-1                  |
| 2.2        | Facility Location                                                                                                                          |                      |
| 3.0        | Process Description                                                                                                                        | 3-1                  |
| 3.1        | General Discussion                                                                                                                         | 3-1                  |
| 3.2        | Discussion of the Dehydration Process                                                                                                      | 3-2<br>2 2           |
| 3.3        | Equipment Descriptions                                                                                                                     | ε-ε<br>Δ_2           |
| 3.4<br>3.5 | Nonpareil Diagrams and Maps                                                                                                                | 3-4                  |
|            | •                                                                                                                                          |                      |
| 4.0        | Permit Application Forms                                                                                                                   |                      |
| 5.0        | Regulatory Applicability Analysis                                                                                                          | 5-1                  |
| 5.1        | Applicable and Inapplicable IDAPA 58.01.01 Requirements                                                                                    | 5-1<br>5. 8          |
| 5.2<br>5.3 | Applicable and Inapplicable Federal Air Quality Regulations – General Applicable and Inapplicable New Source Performance Standards (40 CFF | 5-8<br>Part 60) 5-10 |
| 5.3<br>5.4 | Applicable and Inapplicable National Emission Standards for Hazardous                                                                      | Air Pollutants       |
| J,¬        | (40 CFR Part 61)                                                                                                                           | 5-12                 |
| 5.5        | Applicable and Inapplicable National Emission Standards for Hazardous                                                                      | Air Pollutants       |
|            | for Source Categories (40 CFR Part 63)                                                                                                     | 5-13                 |
| 5.6        | Specific Applicable and Inapplicable Requirement Discussion                                                                                | 5-18                 |
| 6.0        | Emissions Information and Documentation                                                                                                    |                      |
| 6.1        | Emission Inventory                                                                                                                         | 6-1                  |
| 6.2        | Process Weight                                                                                                                             | 6-10                 |
| 6.3        | Grain Loading                                                                                                                              | 6-11                 |
| 6.4        | Fugitive Sources                                                                                                                           | •                    |
| 7.0        | Excess Emissions Documentation                                                                                                             | 7-1                  |
| 8.0        | Ambient Air Quality Impact Analysis                                                                                                        | 8-1                  |
| 9.0        | Compliance Certification Plan                                                                                                              | 9-1                  |
| 9.1        | Objective                                                                                                                                  | 9-1                  |
| 9.2        | Certification                                                                                                                              | 9-15                 |
| 10.0       | Insignificant Activities                                                                                                                   | 10-1                 |
| 11.0       | Alternative Operating Scenario/Trading Scenarios/Permit Shield                                                                             | 11-1                 |
| 11.1       | Alternative Operating Scenario/Trading Scenarios                                                                                           | 11-1                 |
| 11.2       | Permit Shield.                                                                                                                             | 11-1                 |
| 12.0       | Demonstration of Compliance with Toxic Standards                                                                                           | 12-1                 |
| 13.0       | Compliance Assurance Monitoring (CAM) Applicability analysis                                                                               | 13-1                 |

# LIST OF TABLES

| Table 1-1 Current Tier II Permit #P-050300 Potential to Emit                          | 1-1  |
|---------------------------------------------------------------------------------------|------|
| Table 1-2 Requested Title V Permit Limits                                             |      |
| Table 3-1 Process Equipment                                                           | 3-1  |
| Table 5.1-1 Applicable and Inapplicable IDAPA 58.01.01 Requirements                   | 5-1  |
| Table 5.2-1 Applicable and Inapplicable 40 CFR Regulations                            | 5-8  |
| Table 5.3-1 Applicable and Non-Applicable New Source Performance Standards (40 CFR    | Part |
| 60)                                                                                   |      |
| Table 5.4-1 Applicable and Inapplicable National Emission Standards for Hazardous Air |      |
| Pollutants (40 CFR Part 61)                                                           | 5-12 |
| Table 5.5-1 Applicable and Inapplicable National Emission Standards for Hazardous Air |      |
| Pollutants for Source Categories (40 CFR Part 63)                                     | 5-13 |
| Table 5.6-1 Specific Applicable and Inapplicable Requirements                         | 5-18 |
| Table 6-1 Process Weight Calculations                                                 | 6-10 |
| Table 6-2 Grain Loading Emissions for Natural Gas Combustion                          | 6-11 |
| Table 6-3 Grain Loading Emissions for Fuel Oil Combustion                             | 6-13 |
| Table 9.1-1 Compliance Plan for Facility-Wide Requirements                            | 9-2  |
| Table 9.1-2 Compliance Plan for Specific Emission Units                               | 9-6  |
| Table 9.1-3 Compliance Plan for Other Federal Requirements                            | 9-13 |
| Table 10.0-1 Insignificant Emissions                                                  | 10-1 |
| Table 13.0-1 Material Transfer Baghouses                                              |      |
| Table 13.0-2 Material Transfer Baghouses                                              |      |
|                                                                                       |      |
| LIST OF FIGURES                                                                       |      |
| Figure 3-1 Process Flow Diagram                                                       | 3-5  |
| Figure 3-2 Process Flow Diagram (Continued)                                           | 3-6  |
| Figure 3-3 Nonpareil Location Map                                                     | 3-7  |
| Figure 3-4 Nonpareil Plot Plan                                                        | 3-8  |

# 1.0 INTRODUCTION AND OVERVIEW

#### 1.1 INTRODUCTION

Nonpareil Corporation (Nonpareil) is applying for a Title V Operating Permit (OP). Nonpareil is currently operating under PTC / Tier II Permit #P-050300 which was issued on May 9, 2007.

Nonpareil processes dehydrated potato products at its plant in Blackfoot, Idaho. The east processing boiler at the facility failed in March 2008 and a new replacement east processing boiler has been proposed in a PTC application submitted April 14, 2008. In the PTC application, Nonpareil requested to replace the existing east processing boiler with a new boiler capable of combusting natural gas or No. 2 fuel oil.

In addition to the new east processing boiler, Nonpareil has a west processing boiler as well as other combustion and process emission sources that are included in this Tier I application. Under Nonpareil's current Tier II Permit #P-050300 Nonpareil had been determined to have the following point source potential to emit:

Table 1-1 Current Tier II Permit #P-050300 Potential to Emit

|   | CO       | NO <sub>x</sub> | $SO_2$    | $PM_{10}$ | VOC     |
|---|----------|-----------------|-----------|-----------|---------|
| İ | 63.4 tpy | 114.8 tpy       | 248.4 tpy | 164.5 tpy | 5.3 tpy |

The plant is currently a Title V major source for NOx, PM-10, and SO<sub>2</sub>. The plant is a minor source for Prevention of Significant Deterioration (PSD) purposes.

With the proposed new east processing boiler, Nonpareil would have the following point source potential to emit. This potential to emit incorporates the proposed east processing boiler and existing west processing boiler combined operating scenario which results in the maximum allowable emissions. The boiler operating scenario utilized in the PTE calculations assumes the west processing boiler will utilize 2,011,500 gallons of residual fuel oil (7,450 hr/yr) and the remaining hours on natural gas and the east processing boiler will operate 8,760 hr/yr on natural gas. All other fuel burning equipment will operate 8,760 hr/yr on natural gas. The permit limits requested in this Tier I permit application are summarized below:

Table 1-2 Requested Title V Permit Limits

| CO       | NO <sub>x</sub> | $SO_2$    | $PM_{10}$  | VOC     |
|----------|-----------------|-----------|------------|---------|
| 75.5 tpy | 117.6 tpy       | 248.4 tpy | 164.99 tpy | 5.5 tpy |

With the submittal of this Tier I application, Nonpareil requests that the Idaho Department of Environmental Quality (DEQ) issue a Tier I, Title V OP for its proposed new east processing boiler and all other existing equipment.

#### 1.2 PROJECT OVERVIEW

Nonpareil has proposed to construct a new east processing boiler at their existing facility in Blackfoot, Idaho. The new boiler will replace the existing east processing boiler which failed in early March. The new boiler is capable of combusting natural gas or No. 2 fuel oil.

The replacement of the east processing boiler along with associated permit limits pertaining to both the processing boilers was the only modification that affects existing permitted equipment. There were no other changes requested in the April 14, 2008 permit application to the process or equipment currently permitted under permit P-050300.

Section 2.0 - Facility Classification, discusses general facility information and includes the certified general facility information form.

Section 3.0 - Process Description, describes and shows the Nonpareil process.

Section 4.0 – Tier I Application Forms includes Section 1.0 of the Tier I Application Forms with a certified signature.

Section 5.0 - Regulatory Applicability Analysis, presents the state and federal air quality regulations that apply to the proposed reconnection and, equally important, the regulations that do not apply.

Section 6.0 - Emissions Calculations provides detailed emission calculations, and explanations of assumptions and conventions used in determining short and long term emission levels.

Section 7.0 – Excess Emissions Documentation discusses any excess emissions experienced by Nonpareil.

Section 8.0 – Ambient Air Impact Analysis includes a copy of the modeling analysis report that was submitted with the PTC application.

Section 9.0 – Compliance Certification Plan discusses compliance demonstration by Nonpareil and provides a schedule for obtaining compliance. A compliance certification is included.

Section 10.0 - Insignificant Activities lists any insignificant activities at the Nonpareil facility.

Section 11.0 – Alternative Operating Scenario/Trading Scenarios/Permit Shield discusses any applicable alternative operating scenarios, trading scenarios, and permit shields.

Section 12.0 – Demonstration of Compliance with Toxic Standards provides an analysis of the potential impact to the ambient air from any toxic air pollutants (TAPs) and hazardous air pollutants (HAPs) emitted from Nonpareil.

# 2.0 FACILITY CLASSIFICATION

The Nonpareil facility is not a designated facility, as defined at IDAPA 58.01.01.006.27. Nonpareil is a major facility for  $PM_{10}$ ,  $NO_X$  and  $SO_2$  because the potential to emit (PTE) is greater than 100 tons a year. The facility is a PSD minor source as no criteria pollutant exceeds 250 tpy.

# 2.1 FACILITY DESCRIPTION

Nonpareil is a potato processing company that packs, processes and dehydrates various potato products. The Nonpareil Corporation has three plants, all of which are contained within the same property boundary: Idaho Potato Packers, Nonpareil Dehydrated, and Nonpareil Processing.

- Idaho Potato Packers A fresh potato facility where potatoes are washed, sorted, sized and packaged.
- Nonpareil Dehydrated Obtains potatoes from Idaho Potato Packers. Potatoes are peeled
  or not, scrubbed, sorted, sliced or diced, wet sorted, blanched, and dried to form
  dehydrated potato pieces including slices, dices, strips, crush, and hash browns.
  Unacceptable wet and some unacceptable dried potatoes are taken to Nonpareil
  Processing.
- Nonpareil Processing Produces dehydrated potato flakes, flour agglomerate, dried starch, and other flake and flour-based potato products. Potatoes may be peeled and are scrubbed sorted, slabbed, precooked or not precooked, cooled, cooked, riced, and dried. Products are dried to 6% moisture and are broken up and grinded to customer specifications, packaged or stored, and then sold. This is the site where the east and west boilers are located. The process also includes dryers, flakers, peelers and baghouse equipment, which are also sources of emissions.

Descriptions of the process and the proposed boiler residual fuel reconnections are given in Section 3. Also, process flow diagrams are included in Section 3.

#### 2.2 FACILITY LOCATION

The Nonpareil facility is located approximately 1 mile west of Blackfoot in Bingham County, Idaho. The location of Nonpareil is shown in Figure 3-3. The plant is located in Section 32, Township 2 South, Range 36 East, at Universal Transverse Mercator (UTM) Zone 12 coordinates of 388 km east, 4784 km north. The area is unclassifiable for all federal and state criteria pollutants.

# 3.0 PROCESS DESCRIPTION

# 3.1 GENERAL DISCUSSION

The process used to produce dehydrated potato product involves steam peeling, dryers, flakers, peelers and baghouse equipment for product transfer. Boilers provide the steam necessary for drying the product. Tanks are onsite to store the fuel required for the boilers and other facility equipment.

The sources of emissions have been identified in Table 3-1 below. The installation date or last modification date of each equipment item is shown in the table:

Table 3-1 Process Equipment<sup>1</sup>

|                                 | INSTALLATION |
|---------------------------------|--------------|
|                                 | OR           |
|                                 | MODIFICATION |
| EQUIPMENT                       | DATE         |
| Starch Dryer                    | 1961         |
| Starch Plant Baghouse           | 1961         |
| Building #3 Air Makeup          | 1965         |
| Building #4 Air Makeup          | 1965         |
| Flaker No. 1                    | 1970         |
| Flaker No. 2                    | 1970         |
| Flaker No. 3                    | 1970         |
| Flaker No. 4                    | 1970         |
| Flake Baghouse                  | 1970         |
| Dehydration North Boiler        | . 1973       |
| Dehydration South Boiler        | 1973         |
| Dryer # 1 A Stage               | 1973         |
| Dryer # 1 B&C Stage             | 1973         |
| Dryer # 2 A Stage               | 1973         |
| Dryer # 2 B&C Stage             | 1973         |
| Dryer # 3 A Stage               | 1973         |
| Boiler #6 Fuel Oil Supply Tank  | 1973         |
| Fuel Oil Reserve Tank           | 1973         |
| Wet Area Air Makeup             | 1975         |
| Inspection Room Roof Air Makeup | 1975         |
| Dehydration Steam Peeler        | 1984         |
| Processing Peeler Exhaust       | 1985         |
| Grinding Circuit No. 1 Baghouse | 1988         |
| Packing Baghouse No. 1          | 1988         |
| Packing Baghouse No. 2          | 1988         |
| Dryer # 3 B&C Stage             | 1989         |

<sup>&</sup>lt;sup>1</sup> Specifications for the fuel burning and process equipment are provided on the appropriate IDEQ Tier I Application Forms, Sections 2 through 8.

Nonpareil Corporation

| Dryer # 4 A Stage                    | 1989 |
|--------------------------------------|------|
| Dryer # 4 B Stage                    | 1989 |
| Dryer # 5 C Stage                    | 1989 |
| South Dryer Room 4&5 Air Makeup      | 1989 |
| Dehydration Research Dryer           | 1989 |
| Crush-room Baghouse No. 1            | 1989 |
| Crush-room Baghouse No. 2            | 1989 |
| Reblend Room Air Makeup              | 1990 |
| South Dryer Room 4&5 Roof Air Makeup | 1991 |
| Dehydration Bin Dryer                | 1991 |
| Gasoline Fuel Tank                   | 1991 |
| Processing West Boiler               | 1992 |
| Dryer # 4 C Stage                    | 1992 |
| Dryer # 5 A Stage                    | 1992 |
| Dryer # 5 B Stage                    | 1992 |
| Flaker No. 5                         | 1992 |
| Scratch Match Dryer                  | 1997 |
| Scratch Match Air Makeup             | 1997 |
| Scratch Mash Baghouse                | 1997 |
| Grinding Circuit No. 2 Baghouse      | 1997 |
| IPP Diesel Fuel Tank                 | 1998 |
| Jet Fuel "A" Tank                    | 1998 |
| Processing East Boiler               | 2008 |
| 1 Toccasing Last Doner               |      |

# 3.2 DISCUSSION OF THE DEHYDRATION PROCESS

Nonpareil is a potato processing company. Their process primarily involves potato dehydration to make potato flakes, dices and slices. The process includes dryers and dehydration lines, which are also sources of emissions.

Initially potatoes are received at the plant on trucks and are unloaded into storage, with much of the rock and silt removed prior to storage. They are taken from the storage cellars for processing using cold water to transport and wash the potatoes. The potatoes are conveyed to a raw sort table where rot, sticks and other debris are removed. Waste products from this process, and from the processes described below, are used for cattle feed.

The potatoes enter a steam peeler, where they are exposed to steam for a brief period of time. This loosens the peeling prior to the brush peeling/washing stage. The steam is exhausted and quenched in a water bath. Excess steam may exhaust out the roof but most, if not all, of the steam is quenched by cool water and sent to land application. The peeling is fully removed by dry scrubbing which is done by revolving brushes.

In the flake line, the potatoes are sent to a pre-cooker, which blanches the material. This operation gelatinizes the starch. Potatoes are then cooled to retrograde the starch gelatinization for better texture and taste. The potatoes are water transported into cookers where they are exposed to steam to fully cook the potato. The potatoes are riced, forced through slots and broken into smaller pieces like mash, and added to the dehydration rolls.

The mashed/riced potatoes are spread across the face of the drum dryers with applicator rolls. Only whole cells stick to the drum. The steam drum dryer rotates and drives the moisture from the potato cells. The dryers are heated with steam from the boilers. The main dehydrated moisture is removed from the drum dryer stack.

The dried potato sheet is cut off the drum and broken into smaller pieces. Good flake goes to mills where it is cut into desired particle size and density (as required by customers) and air transported to product separation baghouses. The vacu-lift units either move dehydrated product or separate dust from the product and are powered by electrical fans. The flake is then bagged and placed into large totes for storage. The baghouse units move dehydrated product to bagging and/or tote filling stations, or remove dust from the areas these units service. Bagged product is sent to warehouses for storage or sent directly to shipping.

# 3.3 EQUIPMENT DESCRIPTIONS

Steam Peeler: Steam peelers combine steam and a vacuum to effectively explode potato peels away from the body of the potatoes. Pressure peelers bring potatoes in through a pressure valve into a high-pressure chamber that uses steam to scald the potatoes. The steam permeates just below the peel, and then a vacuum is drawn on the system that causes the trapped steam to explode away the peel. The potatoes then are passed through a relief valve to return to atmospheric pressure.

Pre-cooker/Blancher: This equipment is designed to prepare the potatoes for the drum dryers by heating them so they are easier to spread. Water constantly flows from the top of the pre-cooker at a high volume, heating the whole potatoes to a precise, uniform internal temperature as they pass through the unit on a stainless steel conveyor belt.

Drum Dryer: The drum dryer has steam rotary drum and a scraper blade to scrape material dried on the drum surface. The basic need of a drum dryer is to evaporate water particle from the blanched potatoes processed in the pre-cookers with the dried material to be scraped and collected.

Flakers: Flakers are for the conversion of materials from a liquid state to solid flakes in a single operation. This change of state is achieved by applying a film of the material to be flaked to the outer surface of a horizontal rotating drum, which is cooled internally by means of water. As the drum rotates, the liquid film solidifies and is subsequently removed from the drum surface by a doctor blade or knife.

Single-Stage Dryers: These dryers consist of a single conveyor that carry product through the multiple zones of the dryers. Each zone varies in operating temperature and airflow. By using the zone arrangements, temperature and airflow efficiencies can be optimized during periods of maximum evaporation. Bed depth is held uniform through-out the process, resulting in an accurate and predictable drying rate with the highest possible drying efficiency.

Multi-Stage Dryers: Theses dyers incorporate a series of single-stage, multizone units. It is ideal for products with a high incoming moisture content, which would benefit from reorientation by transferring between conveyor belts at the ideal time in their drying cycle. Product bed depth and air flow vary between stages based on the product's drying curve. Discrete zones allow both air flow and temperature to be independently altered to maintain proper process parameters.

## 3.4 BOILER OPERATION

Currently, Nonpareil operates their east and west process boilers on natural gas. The boilers also are capable of combusting fuel oil. The west boiler is capable of combusting No. 6 fuel oil and the new east boiler will have the capability of operating on No. 2 fuel oil. Only one boiler at a time will operate on fuel oil. The No. 6 residual fuel oil sulfur content shall not exceed 1.55% sulfur by weight and the No. 2 distillate fuel oil sulfur content shall not exceed 0.5% sulfur by weight.

Nonpareil has the option of using emulsifier at all times if the boilers are source tested while using emulsifiers. If Nonpareil chooses to use an emulsifier, it will use it at all times and during source testing.

# 3.5 NONPAREIL DIAGRAMS AND MAPS

This section contains the maps and diagrams necessary to accurately show Nonpareil's process and facility. Nonpareil's process flow diagrams for the dehydration and processing plants are shown in Figures 3-1 and 3-2 (a flow diagram for the Potato Packer Plant is not shown because it is a fresh potato facility and generates no emissions). A location map is shown in Figure 3-3. A facility site plan is shown in Figure 3-5.

Figure 3-1 Process Flow Diagram

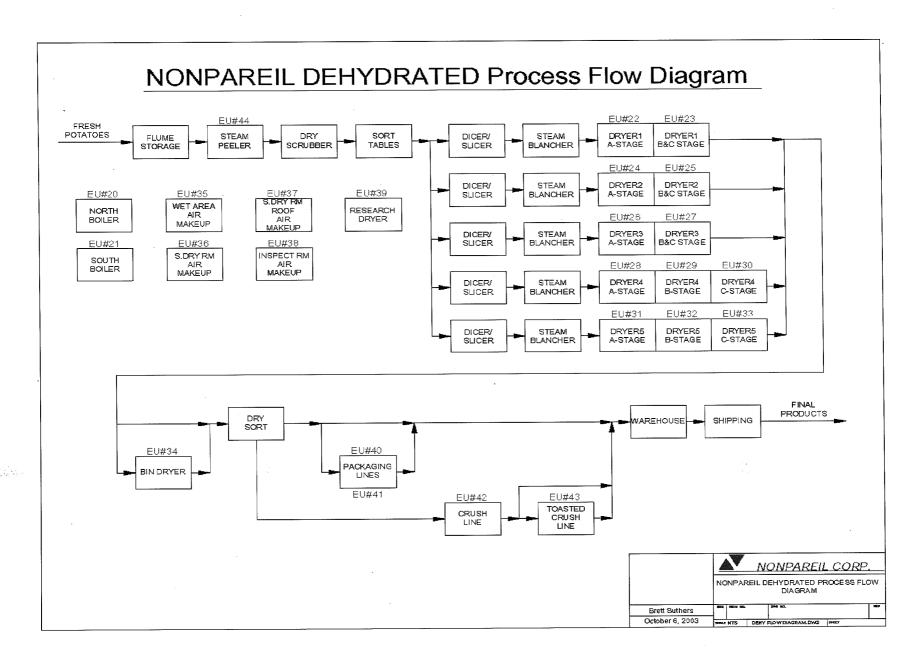
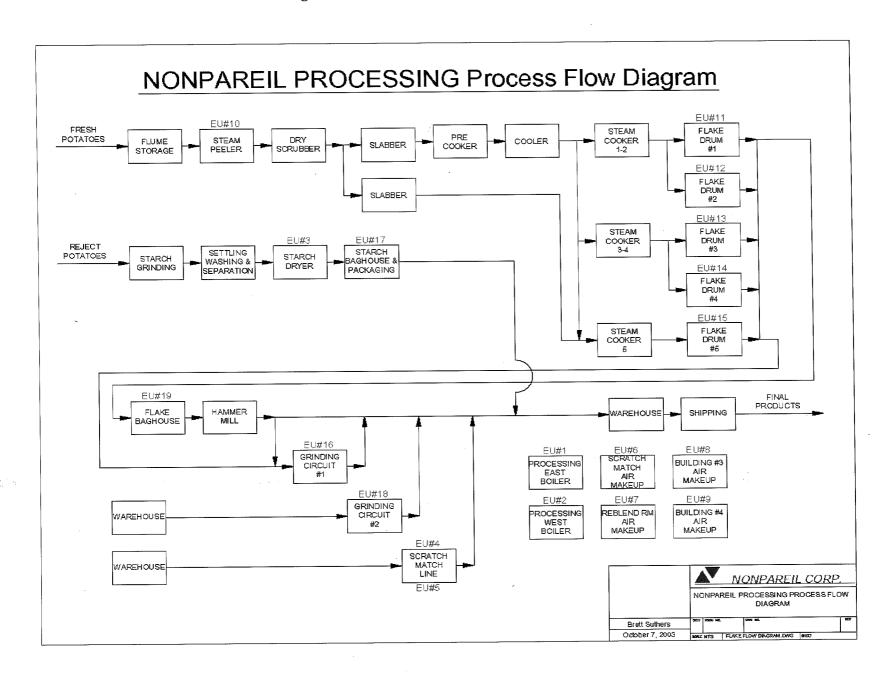
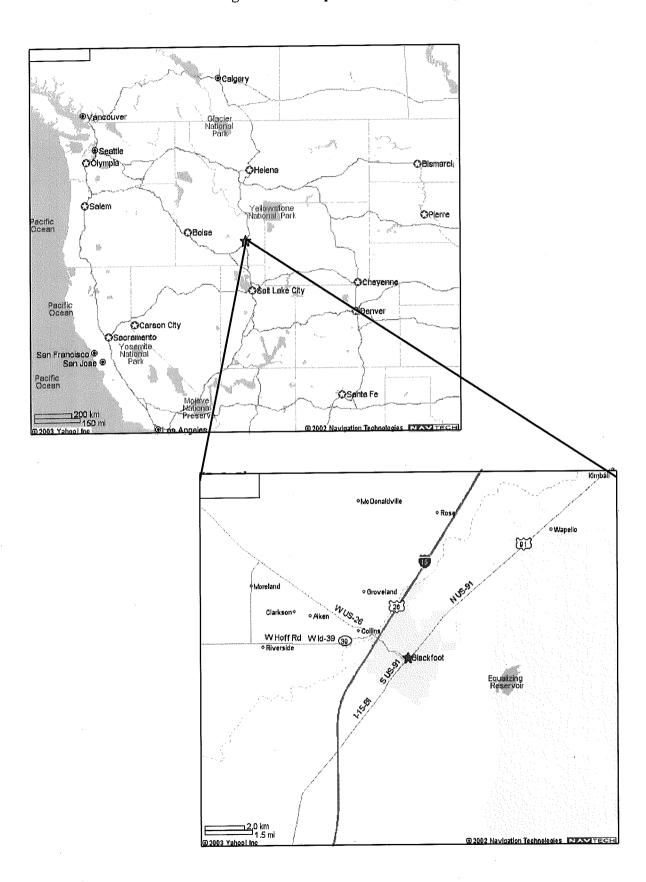
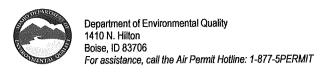



Figure 3-2 Process Flow Diagram (Continued)



Figure 3-3 Nonpareil Location Map



# Figure 3-4 Nonpareil Plot Plan

# SEE ORIGINAL APPLICATION FOR PLOT PLAN

# 4.0 PERMIT APPLICATION FORMS



**Brett Suthers** 

Print or Type Responsible Official Name

# AIR QUALITY TIER I OPERATING PERMIT APPLICATION

# **SECTION 1: GENERAL INFORMATION**

| Company & Division Name:                                                                                                                   | Nonpareil Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Company Mailing Address:                                                                                                                   | 40 North 400 West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| City:                                                                                                                                      | Blackfoot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | State: ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zip: 83221                                   |
| •                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Control - Cont |                                              |
| Company Environmental Contact Name:                                                                                                        | Brett Suthers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dhono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 208-785-5880                                 |
| Title:                                                                                                                                     | Engineering Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200-700-0000                                 |
| Company Owner or Responsible Official Name:                                                                                                | Brett Suthers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Title:                                                                                                                                     | Engineering Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 208-785-5880                                 |
| Exact Plant Location:                                                                                                                      | Due west of Blackfoot ¾ of a m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| General Nature of Business:                                                                                                                | Potato Processing Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| No. Full-time Employees:                                                                                                                   | 450-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Property Area (acres):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 523.7                                        |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Reason for Application:                                                                                                                    | ☐ Initial Tier I permit to operate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                                                                                                                            | ☐ Renewal Tier I permit to ope ☐ Modification/Amendment of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                     |
|                                                                                                                                            | ☐ Change of ownership or loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>u</b> -                                   |
|                                                                                                                                            | Citalige of ownership of loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| Distance to Nearest State Border (miles):                                                                                                  | 66.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Primary SIC:                                                                                                                               | 2034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Secondary SIC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                         |
| Plant Location County:                                                                                                                     | Bingham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Elevation (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4498                                         |
| UTM Zone:                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| UTM (X) Coordinate (kM):                                                                                                                   | 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UTM (Y) Coordinate (kM):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4784                                         |
| LIST ALL FACILITIES WITHIN THE STATE<br>EMISSIONS TO THE AIR. IF NOT, SO STA                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Name of Facility                                                                                                                           | A STATE OF THE STA | Location of Other Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHRY                                         |
| Idaho Potato Packers                                                                                                                       | Blackfoot, Idaho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Nonpareil Dehydrated                                                                                                                       | Blackfoot, Idaho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Nonpareil Processing                                                                                                                       | Blackfoot, Idaho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Owner or Responsible Official                                                                                                              | Walter Gay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Title of Responsible Official                                                                                                              | Vice President Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Certification of Truth, Accuracy, and Comp<br>I hereby certify that based on information and<br>any attached and/or referenced document(s) | belief formed after reasonable in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | quiry, the statements and inform accordance with IDAPA 58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rmation contained in this and 01.01.123-124. |
| Trapolition amount agriculta                                                                                                               | · sample comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •                                        |

| ~   |      |     | C1 1C1 | BURNING | - =0 | HOMENIT    |
|-----|------|-----|--------|---------|------|------------|
| SEC | חודי | МЭ. | FUEL   | BURNING | ュヒい  | JIPIVICINI |

#### PROCESSING WEST BOILER

| DEO | LICE | ONII | v |
|-----|------|------|---|
|     |      |      |   |

| DEQ PLANT ID CODE | DEQ PROCESS CODE | DEQ STACK ID CODE |  |
|-------------------|------------------|-------------------|--|
| DEQ BUILDING CODE | PRIMARY SCC      | SECONDARY SCC     |  |
| DEQ SEGMENT CODE  |                  |                   |  |

# PART A: GENERAL INFORMATION

| PROCESS CODE OR DESCRIPTION | PROCESSING WE | EST BOILER     |                          |
|-----------------------------|---------------|----------------|--------------------------|
| STACK DESCRIPTION           | POINT SOURCE  |                |                          |
| BUILDING DESCRIPTION        | PROCESS PLANT | BOILER ROOM    |                          |
| MANUFACTURER                | ERIE CITY     | MODEL SA60H-21 | DATE INSTALLED 1990      |
|                             |               |                | DATE LAST MODIFIED Never |

#### RATED CAPACITY (CHOOSE APPROPRIATE UNITS)

| MILLION BTU/HR    | 40.5 | BURNER TYPE LOW-NOx     |
|-------------------|------|-------------------------|
| 1000 LBS STEAM/HR |      | % USED FOR PROCESS 100  |
| KILOWATTS         |      | % USED FOR SPACE HEAT 0 |

#### FUEL DATA\*\*

| PARAMETER                  | PRIMARY FUEL | UNITS      | SECONDARY FUEL | UNITS      |
|----------------------------|--------------|------------|----------------|------------|
| ANAMETER                   |              |            |                |            |
| FUEL CODE (SEE NOTE)       | 1            | na*        | 4              | na         |
| ,                          |              |            | ·              |            |
| PERCENT SULFUR             | <0.001       | %          | 1.55           | %          |
|                            |              |            |                |            |
| PERCENT ASH                | 0            | %          | 0.02           | %          |
|                            |              |            |                |            |
| PERCENT NITROGEN           | 3.4          | %          | 0.18           | %          |
|                            |              |            |                | T          |
| PERCENT CARBON             | 72.5         | %          | 84             | %%         |
|                            |              |            |                |            |
| PERCENT HYDROGEN           | 23.8         | %          | 11             | %          |
|                            |              |            |                | %          |
| PERCENT MOISTURE           | 0            | %          | <2.0           | . 70       |
|                            |              |            |                |            |
| HEAT CONTENT               |              |            | 450,000        | BTU/gal    |
| (BTU/UNIT)                 | 1,020        | BTU/scf    | 150,000        | BTO/gai    |
|                            | 39705.88     |            | 270.00         |            |
| MAXIMUM HOURLY             | 39703.00     | SCF/HR     | ]              | GAL/HR     |
| COMBUSTION RATE (UNITS/HR) |              | 3017110    |                |            |
| NORMAL ANNUAL              |              |            |                |            |
| COMBUSTION RATE (UNITS/YR) | 347.82       | MMSCF/YR** | 2.01           | MMGAL/YR** |

\*Not applicable \*\*Assumes west boiler will be the one operating on NG.

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

#### PROCESSING WEST BOILER

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAY/WEEK           | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

#### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

#### STACK DATA

| VENTILATION AND BUILDING/AREA DATA | SIACK DATA                               |       |
|------------------------------------|------------------------------------------|-------|
| ENCLOSED (Y/N)? N                  | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | 2     |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 60    |
| BUILDING/AREA LENGTH (FT) 50       | STACK EXIT DIAMETER (FT)                 | 2.95  |
| BUILDING/AREA WIDTH (FT) 40        | STACK EXIT GAS FLOWRATE (ACFM)           | 9149  |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | 410   |
|                                    |                                          |       |

#### AIR POLLUTANT EMISSIONS\*\*

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |          | ALLOWABLE EMI | SSIONS                                                        |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|----------|---------------|---------------------------------------------------------------|
| POLLOTAN  |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR) | (TONS/YR)     | REFERENCE                                                     |
|           |            |                        |        |                       |                                   |          | T             |                                                               |
| PM        |            | 7.60E-06               | lb/scf | 0                     | 5.12E+00                          | na       | na            | na                                                            |
| PM-10     |            | 7.60E-06               | lb/scf | 1 0                   | 5.12E+00                          | 5.52     | 21.01         | Tier II OP, No. 011-00027                                     |
| PW-10     |            | 7.002.00               |        |                       |                                   |          |               | Combined for East and West Boilers                            |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 6.65E+01                          | 66.573   | 248.02        | Tier II OP, No. 011-00027  Combined for East and West Boilers |
| co        |            | 8.40E-05               | lb/scf | 0                     | 3.34E+00                          | na       | na            | na                                                            |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 1.49E+01                          | na       | na            | na                                                            |
| voc       |            | 5.50E-06               | lb/scf | 0                     | 3.46E-01                          | na       | na            | na                                                            |
| LEAD      |            | 5.00E-10               | lb/scf | 0                     | 4.00E-03                          | na       | na            | na                                                            |

EER for NG from AP-42, Table 1.4-1.2, 1998. EF for residual oil from AP-42, Table 1.3-1,3,11, 1998.

\*\*Assumes east boiler will be the one operating on NG.

STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE NOTE:

# **SECTION 2: FUEL-BURNING EQUIPMENT**

|            |                                                                                                                        |                                                                                                           |                |           |               |                                                                     | EQ USE ONLY                                                                                                                                                                                                               | a                 |
|------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------|-----------|---------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|            |                                                                                                                        | ode _                                                                                                     | Q Stack ID Co  | D         |               |                                                                     | EQ Plant ID Code                                                                                                                                                                                                          | 130               |
|            |                                                                                                                        | 50.5                                                                                                      | mary SCC       | P         |               |                                                                     | EQ Building Code                                                                                                                                                                                                          |                   |
|            |                                                                                                                        |                                                                                                           | condary SCC    | s         | Fell Control  | )                                                                   | EQ Segment Code                                                                                                                                                                                                           | 1000              |
|            |                                                                                                                        |                                                                                                           |                | - 1       |               |                                                                     | EQ Process Code                                                                                                                                                                                                           | D                 |
|            |                                                                                                                        |                                                                                                           |                |           |               | · · · · · · · · · · · · · · · · · · ·                               |                                                                                                                                                                                                                           |                   |
|            |                                                                                                                        |                                                                                                           |                |           |               |                                                                     | , PART A.                                                                                                                                                                                                                 | SECTION 2,        |
|            |                                                                                                                        |                                                                                                           |                |           |               |                                                                     | FORMATION                                                                                                                                                                                                                 | GENERAL INI       |
|            |                                                                                                                        |                                                                                                           |                |           | ing Boiler    | East Processin                                                      | or Description _                                                                                                                                                                                                          | Process Code o    |
|            |                                                                                                                        |                                                                                                           |                |           |               | Point                                                               | on _                                                                                                                                                                                                                      | Stack Description |
|            |                                                                                                                        |                                                                                                           |                | n         | t Boiler Room | Process Plant                                                       |                                                                                                                                                                                                                           | Building Descrip  |
| April 2008 | Date Installed                                                                                                         |                                                                                                           | 0              | el NS-C-  | Mode          | Company                                                             | Nebraska Boiler                                                                                                                                                                                                           | Manufacturer      |
|            | Date Last Modified                                                                                                     |                                                                                                           |                |           |               |                                                                     |                                                                                                                                                                                                                           |                   |
|            |                                                                                                                        |                                                                                                           |                | )         | ITE UNITS     | APPROPRIA                                                           | CITY (CHOOSE                                                                                                                                                                                                              | RATED CAPA        |
|            | Horsepower                                                                                                             | owatts                                                                                                    | Kilo           | _40       | am/hr         | 1000 lbs Steam                                                      |                                                                                                                                                                                                                           | Million BTU/hr    |
|            |                                                                                                                        |                                                                                                           |                | 100       | rocess        | % Used for Pro                                                      |                                                                                                                                                                                                                           | Burner Type       |
|            |                                                                                                                        |                                                                                                           |                | ,         | pace Heat     | % Used for Sp                                                       | (see note below)                                                                                                                                                                                                          | ••                |
|            |                                                                                                                        |                                                                                                           |                |           |               |                                                                     |                                                                                                                                                                                                                           | FUEL DATA         |
| Units      | Secondary Fuel                                                                                                         | nits                                                                                                      | Un             | nary Fuel | Prim          |                                                                     | Parameter                                                                                                                                                                                                                 |                   |
|            | 02                                                                                                                     |                                                                                                           | _              | 01        |               |                                                                     | note below)                                                                                                                                                                                                               | Fuel Code (see r  |
|            | 0.5                                                                                                                    |                                                                                                           |                | NA        |               |                                                                     |                                                                                                                                                                                                                           | Percent Sulfur    |
|            |                                                                                                                        |                                                                                                           | _ <del>.</del> | NA        |               |                                                                     |                                                                                                                                                                                                                           | Percent Ash       |
|            |                                                                                                                        |                                                                                                           | _              |           |               |                                                                     | en                                                                                                                                                                                                                        | Percent Nitroge   |
|            |                                                                                                                        | ,                                                                                                         | _              |           |               |                                                                     | 1                                                                                                                                                                                                                         | Percent Carbon    |
|            |                                                                                                                        |                                                                                                           | _              |           |               |                                                                     | gen                                                                                                                                                                                                                       | Percent Hydrog    |
|            |                                                                                                                        |                                                                                                           |                |           |               |                                                                     | re                                                                                                                                                                                                                        | Percent Moistur   |
| gallon     | 140,000                                                                                                                | Scf                                                                                                       |                | 1,000     |               |                                                                     |                                                                                                                                                                                                                           | Heat Content (E   |
| gallon     | 340                                                                                                                    | Scf                                                                                                       |                | 52,360    |               |                                                                     | ly Combustion Rate                                                                                                                                                                                                        |                   |
| gallon     | 340                                                                                                                    | Scf                                                                                                       |                | 52,360    | 5             | (units/hr)                                                          | Combustion Rate (                                                                                                                                                                                                         | Normal Annual     |
|            | ##2 Fuel Oil uel Oil r #6 Fuel Oil d Chips d Bark d Shavings der Dust oituminous Coal                                  | 03 - #4 Fu<br>04 - #5 or:<br>05 - Used<br>06 - Wood<br>07 - Wood<br>08 - Wood<br>09 - Sande<br>10 - Subbi | Fuel Codes:    |           | )             | eling Grate  ace bulverized coal) bulverized coal) bkers Fired ired | 01 - Spread stoker<br>02 - Chain or Trave<br>03 - Hand Fired<br>04 - Cyclone Furna<br>05 - Wet Bottom (p<br>06 - Dry Bottom (p<br>07 - Underfeed Sto<br>08 - Tangentially F<br>09 - Horizontally Fi<br>10 - Axially Fired |                   |
|            | r #6 Fuel Oil<br>d Oil<br>d Chips<br>d Bark<br>d Shavings<br>der Dust<br>bituminous Coal<br>ninous Coal<br>racite Coal | 04 - #5 or:<br>05 - Used<br>06 - Wood<br>07 - Wood<br>08 - Wood<br>09 - Sande<br>10 - Subbi<br>11 - Bitum |                |           | )             | oulverized coal)<br>oulverized coal)<br>okers<br>Fired<br>ired      | 04 - Cyclone Furna<br>05 - Wet Bottom (p<br>06 - Dry Bottom (p<br>07 - Underfeed Sto<br>08 - Tangentially F<br>09 - Horizontally Fi                                                                                       |                   |

14 - Propane

15 - Other (specifiy): \_\_\_

# SECTION 2, PART B.

#### **OPERATING DATA**

| Percent Fuel Consu | mption Per Quarter |  |
|--------------------|--------------------|--|
| Dec – Feb          | 25                 |  |
| Mar – May          | 25                 |  |
| Jun – Aug          | 25                 |  |
| Sep – Nov          | 25                 |  |

| Operating S | Schedule |
|-------------|----------|
| Hours/Day   | 24       |
| Days/Week   | 7        |
| Weeks/Year  | 52       |

# POLLUTION CONTROL EQUIPMENT

| Parameter                       |
|---------------------------------|
| Туре                            |
| Type Code (from APP.A)          |
| Manufacturer                    |
| Model Number                    |
| Pressure Drop (in. of water)    |
| Wet Scrubber Flow (GPM)         |
| Baghouse Air/Cloth Ration (FPM) |

|    | Primary |  |  |
|----|---------|--|--|
| NA |         |  |  |
|    |         |  |  |
|    |         |  |  |
|    |         |  |  |
|    |         |  |  |
|    |         |  |  |

|    | Secondary | / |
|----|-----------|---|
| NA |           |   |
|    |           |   |
|    |           |   |
|    |           |   |
|    |           |   |
|    |           |   |
|    |           |   |

# **VENTILATION AND BUILDING/AREA DATA**

| • • • • • • • • • • • • • • • • • • • •         |          |
|-------------------------------------------------|----------|
| sed?                                            | Yes 🛛 No |
| Type (from APP.B)                               |          |
| num Flow (acfm)                                 |          |
| ent Capture Efficiency                          |          |
| ing Height (ft) <u>16.5</u>                     | 5        |
| ing/Area Length (ft) 50                         |          |
| ing/Area Width (ft) 40                          |          |
| ing Height (ft) 16.5<br>ing/Area Length (ft) 50 | 5        |

## STACK DATA

| Ground Elevation (ft)                    | 4498             |
|------------------------------------------|------------------|
| UTM X Coordinate (km)                    | 388.318          |
| UTM Y Coordinate (km)                    | 4,784            |
| Stack Type (see note below)              | 03               |
| Stack Exit Height from Ground Level (ft) | 45 ft or 60 ft   |
| Stack Exit Diameter (ft)                 | 3.0 ft           |
| Stack Exit Gas Flowrate (acfm)           | 14,353 or 13,952 |
| Stack Exit Temperature (°F)              | 335              |

## AIR POLLUTION EMISSIONS

| Pollutant CAS #  | Emission Percent                      | Estimated or<br>Measured<br>Emissions<br>(lbs/hr) |        | Allowable Emissions |           |        |                    |
|------------------|---------------------------------------|---------------------------------------------------|--------|---------------------|-----------|--------|--------------------|
|                  | Factor (see Control below) Efficiency |                                                   | lbs/hr | tons/yr             | Reference |        |                    |
| РМ               |                                       |                                                   |        |                     |           |        |                    |
| PM <sub>10</sub> |                                       | 7.6 lb/MMscf                                      |        | 0.40                | 5.52      | 21.01  | Combined           |
| SO <sub>2</sub>  |                                       | 0.6 lb/MMscf                                      |        | 0.03                | 66.57     | 248.02 | for E&W<br>boilers |
| СО               |                                       | 84 lb/MMscf                                       |        | 4.40                |           |        |                    |
| NO <sub>X</sub>  |                                       | 50 lb/MMscf                                       |        | 2.62                |           |        |                    |
| VOC              |                                       | 5.5 lb/MMscf                                      |        | 1.26                |           |        |                    |
| Lead             |                                       |                                                   |        |                     |           |        |                    |
|                  |                                       |                                                   |        |                     |           |        |                    |
|                  |                                       |                                                   |        |                     | •         |        |                    |
|                  |                                       |                                                   |        |                     |           |        |                    |
|                  |                                       |                                                   |        |                     | -         |        |                    |
|                  |                                       |                                                   |        |                     |           |        |                    |

Note: Stack Type: 01 – Downward; 02 – Vertical (uncovered); 03 – Vertical (covered); 04 – Horizontal; 05 - Fugitive Emission Factor in lbs/units. Please use same hourly units given in fuel data section.

| DEG OSE ONE       |                  |                   |   |
|-------------------|------------------|-------------------|---|
| DEQ PLANT ID CODE | DEQ PROCESS CODE | DEQ STACK ID CODE | _ |
| DEQ BUILDING CODE | PRIMARY SCC      | SECONDARY SCC     | - |
| DEQ SEGMENT CODE  |                  |                   |   |

PART A: GENERAL INFORMATION

| PROCESS CODE OR DESCRI | DTIGETARCH DRVER |                 |                    |      |
|------------------------|------------------|-----------------|--------------------|------|
| PROCESS CODE OR DESCRI | PHOSTAROHDRIER   |                 |                    |      |
| STACK DESCRIPTION      | POINT            |                 |                    |      |
| BUILDING DESCRIPTION   | STARCH PLANT     |                 |                    |      |
| MANUFACTURER           | MAXON            | MODEL MAXON 445 | DATE INSTALLED     | 1961 |
|                        |                  |                 | DATE LAST MODIFIED | 1961 |

RATED CAPACITY (CHOOSE APPROPRIATE UNITS)

| MILLION BTU/HR 4.2 | BURNER TYPE 9         |       |
|--------------------|-----------------------|-------|
| 1000 LBS STEAM/HR  | % USED FOR PROCESS    | . 100 |
| KILOWATTS          | % USED FOR SPACE HEAT | 0     |
| HORSEPOWER         |                       |       |

#### FUEL DATA

|                                          | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|------------------------------------------|--------------|----------|----------------|-------|
| PARAMETER                                | PRIMARTI OLL | Dittio   |                |       |
| FUEL CODE (SEE NOTE)                     | 1            | na*      | None           |       |
|                                          |              |          |                |       |
| PERCENT SULFUR                           | <0.001       | %        |                |       |
|                                          |              |          |                | 1     |
| PERCENT ASH                              | 0            | %%       |                |       |
|                                          | 3.4          | %        |                |       |
| PERCENT NITROGEN                         | 3.4          |          |                |       |
| PERCENT CARBON                           | 72.5         | %        |                |       |
| TEROENT GARBOR                           |              |          |                |       |
| PERCENT HYDROGEN                         | 23.8         | %        |                |       |
|                                          |              |          |                | T     |
| PERCENT MOISTURE                         | 0            | %        |                |       |
|                                          |              |          | T              |       |
| HEAT CONTENT<br>(BTU/UNIT)               | 1,020        | BTU/scf  |                |       |
| (BTO/ONT)                                | 1            |          |                |       |
| MAXIMUM HOURLY                           | 4117.65      |          |                |       |
| COMBUSTION RATE (UNITS/HR)               |              | SCF/HR   |                |       |
|                                          |              |          |                | 1     |
| NORMAL ANNUAL COMBUSTION RATE (UNITS/YR) | 36.07        | MMSCF/YR |                |       |
| *Not applicable                          | 30.07        | 1        |                |       |
| Not applicable                           |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

#### STARCH DRYER

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        | ·            |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

#### ٧

#### STACK DATA

| STACK DATA                               |                                                                                                                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                                                |
| UTM X COORDINATE (KM)                    | . 388                                                                                                                                                                                                |
| UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                                                |
| STACK TYPE (SEE NOTE BELOW)              | 2                                                                                                                                                                                                    |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 28                                                                                                                                                                                                   |
| STACK EXIT DIAMETER (FT)                 | 2                                                                                                                                                                                                    |
| STACK EXIT GAS FLOWRATE (ACFM)           | 5,600                                                                                                                                                                                                |
| STACK EXIT TEMPERATURE (DEG. F)          | 92                                                                                                                                                                                                   |
|                                          | GROUND ELEVATION (FT)  UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT)  STACK EXIT GAS FLOWRATE (ACFM) |

# AIR POLLUTANT EMISSIONS

| OLLUTANT  | CAS NUMBER | EMISSION     | Units  | PERCENT    | ESTIMATED OR |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|--------------|--------|------------|--------------|------------|--------------|---------------------------|
| OLLOTAINT | 1          | FACTOR       |        | CONTROL    | MEASURED     |            |              |                           |
|           |            | (SEE BELOW)* |        | EFFICIENCY | EMISSIONS    | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |              |        |            | (LBS/HR)     |            |              |                           |
|           |            |              |        |            |              | ·          | I            | Inc                       |
| PM        |            | 7.60E-06     | lb/scf | 0          | 3.13E-02     | na         | na na        | na                        |
|           |            | T            |        |            | 3.13E-02     | 0.37       | 1.6          | Tier II OP, No. 011-00027 |
| PM-10     |            | 7.60E-06     | lb/scf | 0          | 3, 13E-02    | 0.37       | 1.0          | HELL OF THE STATE         |
| -         |            | 6.00E-07     | lb/scf | 0          | 2.47E-03     | na         | na           | na                        |
| SO2       |            | 0.002.01     |        |            |              |            |              |                           |
| CO        |            | 8.40E-05     | lb/scf | 0          | 3.46E-01     | na         | na           | na                        |
|           |            |              |        |            |              |            |              |                           |
| NOX       |            | 1.00E-04     | lb/scf | 0          | 4.12E-01     | na         | na           | na ·                      |
|           |            |              |        |            |              |            |              |                           |
| VOC       |            | 5.50E-06     | lb/scf | 0          | 2.26E-02     | na         | na           | na na                     |
|           |            |              |        |            | 1            |            |              | 1                         |
| LEAD      |            | 5.00E-10     | lb/scf | 0          | 2.06E-06     | na         | na           | na                        |

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EC | UIPMENT SCRATO      | CH MASH DRYER      |                    |      |
|----------------------------|---------------------|--------------------|--------------------|------|
| DEQ USE ONLY               |                     |                    |                    |      |
| DEQ PLANT ID CODE          | DEQ PR              | OCESS CODE         | DEQ STACK ID CODE  |      |
| DEQ BUILDING CODE          | PRIMAR              | YSCC               | SECONDARY SCC      |      |
| DEQ SEGMENT CODE           |                     |                    |                    |      |
|                            |                     |                    |                    |      |
| PART A: GENERAL INFORMA    |                     |                    |                    |      |
| PROCESS CODE OR DESCRIP    | TIQ SCRATCH MATCH I | DRYER              |                    |      |
| STACK DESCRIPTION          | POINT               |                    |                    |      |
| BUILDING DESCRIPTION       | PROCESSING PLAN     | NT REBLENDING ROOM |                    |      |
| MANUFACTURER               | MAXON               | MODEL MAXON 500    | DATE INSTALLED     | 1997 |
|                            |                     |                    | DATE LAST MODIFIED | 1997 |
| RATED CAPACITY (CHOOSE A   | PPROPRIATE UNITS)   |                    |                    |      |
| MILLION BTU/HR 8           | 5.5                 | BURNER TYPE        | 9                  |      |
| 1000 LBS STEAM/HR          | $\neg$              | % USED FOR         | PROCESS 100        |      |

#### FUEL DATA

KILOWATTS
HORSEPOWER

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS                                 |
|----------------------------|--------------|----------|----------------|---------------------------------------|
| TARMETER                   |              |          |                |                                       |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           |                                       |
|                            |              |          |                | · · · · · · · · · · · · · · · · · · · |
| PERCENT SULFUR             | <0.001       | %        |                |                                       |
|                            |              |          |                | r                                     |
| PERCENT ASH                | 0            | %        |                |                                       |
|                            | 3.4          | %        |                | T                                     |
| PERCENT NITROGEN           | 3.4          | 76       | <u> </u>       |                                       |
| PERCENT CARBON             | 72.5         | %        |                |                                       |
|                            |              |          |                |                                       |
| PERCENT HYDROGEN           | 23.8         | %%       |                |                                       |
| PERCENT MOISTURE           | 0            | %        |                |                                       |
| PERCENT MOIOTORE           |              |          |                |                                       |
| HEAT CONTENT               |              |          |                |                                       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |                                       |
|                            |              |          |                | Τ                                     |
| MAXIMUM HOURLY             | 5392.16      | SCF/HR   |                |                                       |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                | <u></u>                               |
| NORMAL ANNUAL              |              |          |                |                                       |
| COMBUSTION RATE (UNITS/YR) | 47.24        | MMSCF/YR |                |                                       |
| *Not applicable            |              |          |                |                                       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;

% USED FOR SPACE HEAT

11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

#### SCRATCH MASH DRYERS

## OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYMEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

#### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

#### VENTILATION AND BUILDING/AREA DATA

#### STACK DATA

| GROUND ELEVATION (FT)                  | 4,498                                                                                                                                                                                |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTM X COORDINATE (KM)                  | 388                                                                                                                                                                                  |
| UTM Y COORDINATE (KM)                  | 4,784                                                                                                                                                                                |
| STACK TYPE (SEE NOTE BELOW)            | 2                                                                                                                                                                                    |
| 16.5 STACK EXIT HEIGHT FROM GROUND LEV | EL (FT) 45                                                                                                                                                                           |
| 90 STACK EXIT DIAMETER (FT)            | 2.95                                                                                                                                                                                 |
| 60 STACK EXIT GAS FLOWRATE (ACFM)      | 22,700                                                                                                                                                                               |
| STACK EXIT TEMPERATURE (DEG. F)        | 91                                                                                                                                                                                   |
|                                        | UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  16.5  STACK EXIT HEIGHT FROM GROUND LEV  90  STACK EXIT DIAMETER (FT)  60  STACK EXIT GAS FLOWRATE (ACFM) |

# AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION     | Units  | PERCENT               | ESTIMATED OR |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|--------------|--------|-----------------------|--------------|------------|--------------|---------------------------|
|           | 1          | FACTOR       |        | CONTROL               | MEASURED     | 1          |              |                           |
|           |            | (SEE BELOW)* |        | EFFICIENCY            | EMISSIONS    | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |              |        | 1                     | (LBS/HR)     |            |              |                           |
|           |            |              |        |                       |              |            |              |                           |
| PM        |            | 7.60E-06     | lb/scf | 0                     | 4.10E-02     | na         | na .         | na                        |
|           |            |              |        |                       |              |            |              |                           |
| PM-10     |            | 7.60E-06     | lb/scf | 0                     | 4.10E-02     | 2.56       | 11.20        | Tier II OP, No. 011-00027 |
| 141.10    |            |              |        |                       |              |            |              |                           |
| SO2       |            | 6.00E-07     | lb/scf | 0                     | 3.24E-03     | na         | na           | na                        |
| -         |            |              |        |                       |              |            |              |                           |
| co        |            | 8.40E-05     | lb/scf | 0                     | 4.53E-01     | na         | na           | na                        |
|           |            |              |        |                       |              |            |              |                           |
| NOX       |            | 1.00E-04     | lb/scf | 0                     | 5.39E-01     | na         | na           | na                        |
| NOX.      |            |              |        |                       |              |            |              |                           |
| voc       |            | 5.50E-06     | lb/scf | 0                     | 2.97E-02     | na         | na           | na                        |
| VOC       |            |              |        |                       |              |            |              |                           |
| LEAD      |            | 5.00E-10     | lb/scf | 0                     | 2.70E-06     | na         | na           | na                        |
| -EUN      |            |              |        | a and particulate are | 11           |            |              |                           |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

<sup>\*\*</sup> Summation of fuel burning and particulate emissions.

| SECTION 2: FUEL BURNING EQUIPMEN | NT SCRATCH MASH AIR MA   | KEUP             |                     |        |
|----------------------------------|--------------------------|------------------|---------------------|--------|
| DEQ USE ONLY                     |                          |                  |                     |        |
| DEQ PLANT ID CODE                | DEQ PROCESS CODE         | DEC              | Q STACK ID CODE     |        |
| DEQ BUILDING CODE                | PRIMARY SCC              | SEC              | CONDARY SCC         | $\Box$ |
| DEQ SEGMENT CODE                 |                          |                  |                     |        |
| PART A: GENERAL INFORMATION      |                          |                  |                     |        |
| PROCESS CODE OR DESCRIPTION SCR  | ATCH MATCH AIR MAKEUP    |                  |                     | _      |
| STACK DESCRIPTION VOL            | JME                      |                  |                     |        |
| BUILDING DESCRIPTION PRO         | CESSING PLANT REBLEND RO | MC               |                     |        |
| MANUFACTURER HAR                 | TZELL MODEL N.           | A DA             | TE INSTALLED 19     | 97     |
|                                  |                          | DA               | TE LAST MODIFIED 19 | 97     |
| RATED CAPACITY (CHOOSE APPROPR   | RIATE UNITS)             |                  |                     |        |
| MILLION BTU/HR 5                 | BURNER TYP               | PE 9             |                     |        |
| 1000 LBS STEAM/HR                | [%                       | USED FOR PROCESS | 100                 |        |

#### FUEL DATA

KILOWATTS HORSEPOWER

1000 LBS STEAM/HR

| PARAMETER                  | PRIMARY FUEL | UNITS       | SECONDARY FUEL | UNITS |
|----------------------------|--------------|-------------|----------------|-------|
|                            |              |             |                |       |
| FUEL CODE (SEE NOTE)       | 1            | na*         | None           |       |
|                            |              | - %         | т              |       |
| PERCENT SULFUR             | <0.001       | 70          |                |       |
| PERCENT ASH                | 0            | %           |                |       |
|                            |              |             |                |       |
| PERCENT NITROGEN           | 3.4          | %           |                |       |
|                            |              | 0/          |                | 1     |
| PERCENT CARBON             | 72.5         | %           |                |       |
| PERCENT HYDROGEN           | 23.8         | %           |                |       |
| TEROEM THEROCEN            |              |             |                |       |
| PERCENT MOISTURE           | 0            | %           |                |       |
|                            |              | <del></del> |                |       |
| HEAT CONTENT               |              | DT: 145     |                |       |
| (BTU/UNIT)                 | 1,020        | BTU/scf     |                |       |
| MAXIMUM HOURLY             | 4901.96      |             |                |       |
| COMBUSTION RATE (UNITS/HR) | 1            | SCF/HR      |                |       |
|                            |              |             |                |       |
| NORMAL ANNUAL              |              |             |                |       |
| COMBUSTION RATE (UNITS/YR) | 42.94        | MMSCF/YR    |                |       |
| *Not Available             |              |             |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;

% USED FOR SPACE HEAT

11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

#### SCRATCH MASH AIR MAKEUP

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAYWEEK            | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

#### VENTILATION AND BUILDING/AREA DATA

#### STACK DATA

| REA DATA | STACKDATA                                |                                                                                                                                                                                                                                                              |
|----------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N        | GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                                                                                                        |
| NA       | UTM X COORDINATE (KM)                    | 388                                                                                                                                                                                                                                                          |
| NA       | UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                                                                                                        |
| YNA      | STACK TYPE (SEE NOTE BELOW)              | NA                                                                                                                                                                                                                                                           |
| 16.5     | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | SOURCE HEIGHT = 10 FT                                                                                                                                                                                                                                        |
| 90       | STACK EXIT DIAMETER (FT)                 | , NA                                                                                                                                                                                                                                                         |
| 60       | STACK EXIT GAS FLOWRATE (ACFM)           | NA                                                                                                                                                                                                                                                           |
|          | STACK EXIT TEMPERATURE (DEG. F)          | NA                                                                                                                                                                                                                                                           |
|          | NA                                       | N   GROUND ELEVATION (FT)     NA   UTM X COORDINATE (KM)     NA   UTM Y COORDINATE (KM)     Y NA   STACK TYPE (SEE NOTE BELOW)     16.5   STACK EXIT HEIGHT FROM GROUND LEVEL (FT)     90   STACK EXIT DIAMETER (FT)     60   STACK EXIT GAS FLOWRATE (ACFM) |

#### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|------------------------|--------|---------|-----------------------------------|------------|--------------|---------------------------|
|           |            | FACTOR<br>(SEE BELOW)* |        | CONTROL | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            | 1                      |        |         |                                   |            |              |                           |
| PM        |            | 7.60E-06               | lb/scf | 0       | 3.73E-02                          | na na      | na           | na                        |
|           |            |                        |        |         |                                   |            |              |                           |
| PM-10     |            | 7.60E-06               | lb/scf | 0       | 3.73E-02                          | 0.04       | 0.16         | Tier II OP, No. 011-00027 |
|           |            |                        |        |         |                                   |            |              |                           |
| SO2       |            | 6.00E-07               | lb/scf | 0       | 2.94E-03                          | na         | na           | na                        |
|           |            |                        |        |         |                                   |            |              |                           |
| СО        |            | 8.40E-05               | lb/scf | 0       | 4.12E-01                          | na         | na           | na                        |
|           |            |                        |        |         |                                   |            |              |                           |
| NOX       |            | 1.00E-04               | lb/scf | 0       | 4.90E-01                          | na         | na ·         | na                        |
|           |            |                        |        |         |                                   |            |              |                           |
| voc       |            | 5.50E-06               | lb/scf | 0       | 2.70E-02                          | na         | na           | na                        |
|           |            | <u> </u>               |        |         |                                   |            |              |                           |
| LEAD      |            | 5.00E-10               | lb/scf | 0       | 2.45E-06                          | na         | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summalion of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EQUIPMENT                             | REBLEND ROOM AIR MAKEUP              |
|---------------------------------------------------------------|--------------------------------------|
| DEQ USE ONLY                                                  |                                      |
| DEQ PLANT ID CODE                                             | DEQ PROCESS CODE DEQ STACK ID CODE   |
| DEQ BUILDING CODE                                             | PRIMARY SCC SECONDARY SCC            |
| DEQ SEGMENT CODE                                              |                                      |
| PART A: GENERAL INFORMATION  PROCESS CODE OR DESCRIPTIQUEDLEN | ID ROOM AIR MAKEUP                   |
|                                                               |                                      |
| STACK DESCRIPTION VOLUMI                                      |                                      |
| BUILDING DESCRIPTION PROCES                                   | SSING PLANT REBLEND ROOM             |
| MANUFACTURER HARTZE                                           | ELL MODEL IGMP10 DATE INSTALLED 1970 |
|                                                               | DATE LAST MODIFIED 1970              |
| RATED CAPACITY (CHOOSE APPROPRIAT                             | re units)                            |
| MILLION BTU/HR 1                                              | BURNER TYPE 9                        |
| 1000 LBS STEAM/HR                                             | % USED FOR PROCESS 100               |

#### FUEL DATA

KILOWATTS HORSEPOWER

1000 LBS STEAM/HR

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|----------------------------|--------------|----------|----------------|-------|
|                            |              |          |                |       |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           |       |
|                            |              |          |                |       |
| PERCENT SULFUR             | <0.001       | %%       |                |       |
|                            |              |          |                |       |
| PERCENT ASH                | 0            | %        |                |       |
|                            | 3.4          | . %      |                |       |
| PERCENT NITROGEN           | 3.4          | 70       |                |       |
| PERCENT CARBON             | 72.5         | %        |                |       |
|                            | 23.8         | %        | 1              |       |
| PERCENT HYDROGEN           | 23.0         | 70       |                |       |
| PERCENT MOISTURE           | 0            | %        |                |       |
| THE POLITICAL PROPERTY.    |              |          |                |       |
| HEAT CONTENT<br>(BTU/UNIT) | 1,020        | BTU/scf  |                |       |
|                            |              |          |                |       |
| MAXIMUM HOURLY             | 980.39       |          |                |       |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                | J     |
| NORMAL ANNUAL              |              |          |                |       |
| COMBUSTION RATE (UNITS/YR) | 8.59         | MMSCF/YR |                |       |
| *Not applicable            |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;

% USED FOR SPACE HEAT

11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

# REBLEND ROOM AIR MAKEUP

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAYWEEK            | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

## VENTILATION AND BUILDING/AREA DATA

#### STACK DATA

| GROUND ELEVATION (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,498                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |
| UTM X COORDINATE (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 388                                                                                                                                           |
| LITM Y COORDINATE (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,784                                                                                                                                         |
| DIM I COOKDINATE (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |
| STACK TYPE (SEE NOTE BELOW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                            |
| THE STATE OF THE S | SOURCE HEIGHT = 10 F                                                                                                                          |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOURCE HEIGHT - 101                                                                                                                           |
| STACK EXIT DIAMETER (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |
| STACK EXIT GAS FLOWRATE (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT) |

# AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | IISSIONS                  |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| OLLOTANI  |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |                        |        |                       |                                   |            |              |                           |
| PM        |            | 7.60E-06               | lb/scf | 0                     | 7.45E-03                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            | I            | T                         |
| PM-10     |            | 7.60E-06               | lb/scf | 0                     | 7.45E-03                          | 0.01       | 0.03         | Tier II OP, No. 011-00027 |
|           |            |                        |        |                       |                                   |            | r            |                           |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 5.88E-04                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            | ,            |                           |
| CO        |            | 8.40E-05               | lb/scf | 0                     | 8.24E-02                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 9.80E-02                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| voc       |            | 5.50E-06               | lb/scf | 0                     | 5.39E-03                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| LEAD      |            | 5.00E-10               | lb/scf | 1 0                   | 4.90E-07                          | na         | na           | na                        |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EQ | UIPMENT BUILDING    | 9#3 AIR MAKEU | JP          |          |             |      |
|----------------------------|---------------------|---------------|-------------|----------|-------------|------|
| DEQ USE ONLY               | ٠                   |               |             |          |             |      |
| DEQ PLANT ID CODE          | DEQ PRO             | CESS CODE     |             | DEQ STAC | CK ID CODE  |      |
| DEQ BUILDING CODE          | PRIMARY             | scc           |             | SECONDA  | ARY SCC     |      |
| DEQ SEGMENT CODE           |                     |               |             |          |             |      |
| PART A: GENERAL INFORMA    | TION                |               |             |          |             |      |
| PROCESS CODE OR DESCRIPT   | ICBUILDING#3 AIR MA | AKEUP         |             |          |             |      |
| STACK DESCRIPTION          | VOLUME              |               |             |          |             |      |
| BUILDING DESCRIPTION       | PROCESSING PANT     | BUILDING#3    |             |          |             |      |
| MANUFACTURER               | HARTZELL            | MODEL IG      | MP30        | DATE INS | TALLED      | 1965 |
|                            |                     |               |             | DATE LAS | ST MODIFIED | 1965 |
| RATED CAPACITY (CHOOSE AF  | PROPRIATE UNITS)    |               |             |          |             |      |
| MILLION BTU/HR             | 3                   | BURNER TYP    | E           | 9        |             |      |
| 1000 LBS STEAM/HR          | 7                   | 96            | USED FOR PR | OCESS    | 100         |      |

#### FUEL DATA

KILOWATTS HORSEPOWER

1000 LBS STEAM/HR

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|----------------------------|--------------|----------|----------------|-------|
|                            |              |          |                |       |
| FUEL CODE (SEE NOTE)       | 11           | na*      | None           |       |
|                            |              |          |                |       |
| PERCENT SULFUR             | <0.001       | %        |                |       |
|                            |              | %        |                | T     |
| PERCENT ASH                | 0            | 70       |                |       |
| PERCENT NITROGEN           | 3.4          | %        |                |       |
|                            |              |          |                |       |
| PERCENT CARBON             | 72.5         | - %      |                |       |
|                            |              |          |                | T     |
| PERCENT HYDROGEN           | 23.8         | %        |                | L     |
| PERCENT MOISTURE           | 0            | %        |                |       |
| PERCENT MOISTORE           |              |          |                |       |
| HEAT CONTENT               |              |          |                |       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |       |
|                            |              |          |                |       |
| MAXIMUM HOURLY             | 2941.18      | 257415   |                |       |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                | L     |
| NORMAL ANNUAL              |              |          | T              |       |
| COMBUSTION RATE (UNITS/YR) | 25.76        | MMSCF/YR |                |       |
| *Not applicable            |              |          |                |       |
| at humans                  |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;

% USED FOR SPACE HEAT

11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

#### BUILDING #3 AIR MAKEUP

# OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              | ·         |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              | ·         |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

## VENTILATION AND BUILDING/AREA DATA

#### STACK DATA

|      | GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                               |
|------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | UTM X COORDINATE (KM)                    | 388                                                                                                                                                                                 |
| A    | UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                               |
| A    | STACK TYPE (SEE NOTE BELOW)              | NA                                                                                                                                                                                  |
| 16.5 | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | SOURCE HEIGHT = 10 FT                                                                                                                                                               |
| 65   | STACK EXIT DIAMETER (FT)                 | NA .                                                                                                                                                                                |
| 60   | STACK EXIT GAS FLOWRATE (ACFM)           | NA                                                                                                                                                                                  |
|      | STACK EXIT TEMPERATURE (DEG. F)          | NA                                                                                                                                                                                  |
|      | A 16.5<br>65                             | UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  16.5  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT)  STACK EXIT GAS FLOWRATE (ACFM) |

# AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                                     |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------------------------|
| 022017111 |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                                   |
|           |            |                        |        |                       |                                   |            |              | II                                          |
| PM        |            | 7.60E-06               | lb/scf | 0                     | 2.24E-02                          | na         | na           | na ·                                        |
|           |            | 7.60E-06               | lb/scf | 0                     | 2.24E-02                          | 0.02       | 0.1          | Tier II OP, No. 011-00027                   |
| PM-10     |            | 7.6UE-U6               | ID/SCI |                       | 2.241-02                          | 0.02       | 0.,          | 113.11.21.21.21.21.21.21.21.21.21.21.21.21. |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 1.76E-03                          | na         | na           | na                                          |
| CO        |            | 8.40E-05               | lb/scf | 0                     | 2.47E-01                          | na         | na           | na                                          |
|           |            |                        |        |                       |                                   |            |              |                                             |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 2.94E-01                          | na         | na           | na                                          |
|           |            |                        |        |                       | 1                                 |            |              |                                             |
| VOC       |            | 5.50E-06               | lb/scf | 0                     | 1.62E-02                          | na         | na           | na                                          |
|           |            | 5,00E-10               | lb/scf | 1 0                   | 1.47E-06                          | na         | na           | na                                          |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

 $\stackrel{\cdot}{\text{EMISSION}}$  FACTOR IN LBS/UNITS. PLEASE USE SAME HOURLY UNITS GIVEN IN FUEL DATA SECTION.

| SECTION 2: FUEL BURNING EQ | UIPMENT BUILDING        | 6#4AIR MAKE  | JP           |            |          |      |
|----------------------------|-------------------------|--------------|--------------|------------|----------|------|
| DEQ USE ONLY               |                         |              |              |            |          |      |
| DEQ PLANT ID CODE          | DEQ PRO                 | CESS CODE    |              | DEQ STACE  | (ID CODE |      |
| DEQ BUILDING CODE          | PRIMARY                 | scc          |              | SECONDAR   | RY SCC   |      |
| DEQ SEGMENT CODE           |                         |              |              |            |          |      |
| PART A: GENERAL INFORMA    | ATION                   |              |              |            |          |      |
| PROCESS CODE OR DESCRIP    | FIG BUILDING # 4 AIR MA | AKEUP        |              |            |          |      |
| STACK DESCRIPTION          | VOLUME                  |              |              |            |          |      |
| BUILDING DESCRIPTION       | PROCESSING PLAN         | T BUILDING#4 |              |            |          |      |
| MANUFACTURER               | HARTZELL                | MODEL N      | A            | DATE INST. | ALLED    | 1965 |
|                            |                         |              |              | DATE LAST  | MODIFIED | 1965 |
| RATED CAPACITY (CHOOSE AR  | PROPRIATE UNITS)        |              |              |            |          |      |
| MILLION BTU/HR             | 10                      | BURNER TY    | PE           | 9          |          |      |
| 1000 LBS STEAM/HR          | $\neg$                  | 9            | USED FOR PRO | CESS       | 100      |      |

% USED FOR PROCESS

% USED FOR SPACE HEAT

#### FUEL DATA

KILOWATTS HORSEPOWER

1000 LBS STEAM/HR

|                                          | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS       |
|------------------------------------------|--------------|----------|----------------|-------------|
| PARAMETER                                | PRIMARTIFULE | OTTO     | Jozefitzi      |             |
| FUEL CODE (SEE NOTE)                     | 1            | na*      | None           |             |
|                                          |              |          |                |             |
| PERCENT SULFUR                           | <0.001       | %        |                |             |
|                                          |              |          |                |             |
| PERCENT ASH                              | 0            | %%       |                |             |
|                                          | F 24         | %        |                |             |
| PERCENT NITROGEN                         | 3.4          | 70       |                |             |
| PERCENT CARBON                           | 72.5         | %        |                |             |
| T ENGERT OF TREE                         |              |          |                |             |
| PERCENT HYDROGEN                         | 23.8         | %        |                |             |
|                                          | I 0          | %        |                |             |
| PERCENT MOISTURE                         |              | 76       |                |             |
| HEAT CONTENT                             |              |          |                |             |
| (BTU/UNIT)                               | 1,020        | BTU/scf  |                |             |
|                                          |              |          |                | <del></del> |
| MAXIMUM HOURLY                           | 9803.92      |          |                |             |
| COMBUSTION RATE (UNITS/HR)               |              | SCF/HR   |                | <u> </u>    |
| NOTATAL ANDUIAN                          |              |          |                |             |
| NORMAL ANNUAL COMBUSTION RATE (UNITS/YR) | 85.88        | MMSCF/YR |                |             |
| *Not Available                           |              |          |                |             |
| Not Available                            |              |          |                |             |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

# BUILDING #4 AIR MAKEUP

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

#### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                | PRIMARY None | SECONDARY |
|-------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)       |              |           |
| MANUFACTURER                  |              |           |
| MODEL NUMBER                  |              |           |
| PRESSURE DROP (IN. OF WATER)  |              |           |
| WET SCRUBBER FLOW (GPM)       |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPI | vI)          |           |

#### VENTILATION AND BUILDING/AREA DATA

#### STACK DATA

| VENTILATION AND BUILDING/AREA DATA | OTACK BATA                               |                       |
|------------------------------------|------------------------------------------|-----------------------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                    | 4,498                 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388                   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784                 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | NA                    |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | SOURCE HEIGHT = 10 FT |
| BUILDING/AREA LENGTH (FT) 100      | STACK EXIT DIAMETER (FT)                 | NA                    |
| BUILDING/AREA WIDTH (FT) 60        | STACK EXIT GAS FLOWRATE (ACFM)           | NA                    |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | NA                    |
|                                    |                                          |                       |

#### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| 022017111 |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |                        |        |                       |                                   |            | I            | lan .                     |
| PM        |            | 7.60E-06               | lb/scf | 00                    | 7.45E-02                          | na         | na           | na                        |
| PM-10     |            | 7.60E-06               | lb/scf | 0                     | 7.45E-02                          | 0.08       | 0.33         | Tier II OP, No. 011-00027 |
| PW-10     |            | ,,,=====               |        |                       |                                   |            |              |                           |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 5.88E-03                          | na         | na           | na                        |
| co        |            | 8.40E-05               | lb/scf | 0                     | 8.24E-01                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 9.80E-01                          | na         | na           | na                        |
|           |            | 5,50E-06               | lb/scf | 0                     | 5.39E-02                          | na         | na           | na                        |
| voc       |            | 5.502.00               |        |                       | 1                                 |            |              |                           |
| LEAD      |            | 5.00E-10               | lb/scf | 0                     | 4.90E-06                          | na         | na           | na                        |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EQU                          | IPMENT DEHYDRA   | ATION NORTH BOILER |     |                    |      |
|------------------------------------------------------|------------------|--------------------|-----|--------------------|------|
| DEQ USE ONLY                                         |                  |                    |     |                    |      |
| DEQ PLANT ID CODE                                    | DEQ PRO          | CESS CODE          | J   | DEQ STACK ID CODE  |      |
| DEQ BUILDING CODE                                    | PRIMARY          | SCC                |     | SECONDARY SCC      |      |
| DEQ SEGMENT CODE                                     | ]                |                    |     |                    |      |
| PART A: GENERAL INFORMAT PROCESS CODE OR DESCRIPTION |                  | TH BOILER          |     |                    |      |
|                                                      | IPOINT           |                    |     |                    |      |
| STACK DESCRIPTION                                    | POINT            |                    |     |                    |      |
| BUILDING DESCRIPTION                                 | DEHYDRATION BOIL | ER ROOM            |     |                    |      |
| MANUFACTURER                                         | HIGHLANDER       | MODEL 250-3        | ] [ | DATE INSTALLED     | 1973 |
|                                                      |                  |                    | [   | DATE LAST MODIFIED | 1973 |
| RATED CAPACITY (CHOOSE APP                           | PROPRIATE UNITS) |                    |     |                    |      |
| MILLION BTU/HR 10.5                                  |                  | BURNER TYPE        | 9   |                    |      |

#### FUEL DATA

KILOWATTS
HORSEPOWER

1000 LBS STEAM/HR

|                            |              | <del></del> |                | 111170 |
|----------------------------|--------------|-------------|----------------|--------|
| PARAMETER                  | PRIMARY FUEL | UNITS       | SECONDARY FUEL | UNITS  |
|                            |              |             |                |        |
| FUEL CODE (SEE NOTE)       | 1            | na*         | None           |        |
|                            |              |             |                |        |
| PERCENT SULFUR             | <0.001       | %           |                |        |
|                            |              |             |                |        |
| PERCENT ASH                | 0            | %           |                |        |
|                            |              |             |                |        |
| PERCENT NITROGEN           | 3.4          | %           |                |        |
|                            |              |             |                |        |
| PERCENT CARBON             | 72.5         | %           |                |        |
|                            |              |             |                |        |
| PERCENT HYDROGEN           | 23.8         | %           |                |        |
|                            |              |             |                |        |
| PERCENT MOISTURE           | 0            | %           |                |        |
|                            |              |             |                |        |
| HEAT CONTENT               |              |             |                |        |
| (BTU/UNIT)                 | 1,020        | BTU/scf     |                |        |
|                            |              |             |                |        |
| MAXIMUM HOURLY             | 10294.12     |             |                |        |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR      |                |        |
| ,                          |              |             |                |        |
| NORMAL ANNUAL              |              |             |                |        |
| COMBUSTION RATE (UNITS/YR) | 90.18        | MMSCF/YR    |                | ,      |
| *Not applicable            |              |             |                |        |
| 1101 applicable            |              |             |                |        |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;

% USED FOR PROCESS

% USED FOR SPACE HEAT

100

11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

# DEHYDRATION NORTH BOILER

## OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK            |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| 7 0220 71011 001111101 2 2 2 2 2 2 2 2 2 2 2 2 2 |              | OFFICE VIEW PARTY |
|--------------------------------------------------|--------------|-------------------|
| PARAMETER TYPE                                   | PRIMARY None | SECONDARY         |
| TYPE CODE (FROM APP. A)                          |              |                   |
| MANUFACTURER                                     |              |                   |
| MODEL NUMBER                                     |              |                   |
| PRESSURE DROP (IN. OF WATER)                     |              |                   |
| WET SCRUBBER FLOW (GPM)                          |              |                   |
| BAGHOUSE AIR/CLOTH RATIO (FPM)                   |              |                   |

#### VENTUATION AND BUILDING/AREA DATA

#### STACK DATA

| VENTILATION AND BUILDING/AREA DATA |                                          |       |
|------------------------------------|------------------------------------------|-------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | 2     |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 28    |
| BUILDING/AREA LENGTH (FT) 45       | STACK EXIT DIAMETER (FT)                 | 1.6   |
| BUILDING/AREA WIDTH (FT) 50        | STACK EXIT GAS FLOWRATE (ACFM)           | 2,430 |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | 380   |

# AIR POLLUTANT EMISSIONS

| OLLUTANT   | CAS NUMBER | EMISSION               | Units  | PERCENT | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                      |
|------------|------------|------------------------|--------|---------|-----------------------------------|------------|--------------|------------------------------|
| OLLO IAITI |            | FACTOR<br>(SEE BELOW)* |        | CONTROL | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                    |
|            |            |                        |        |         |                                   |            |              |                              |
| PM         |            | 7.60E-06               | lb/scf | 0       | 7.82E-02                          | na         | na           | na                           |
|            |            |                        |        |         | 7.82E-02                          | 0.08       | 0.34         | Tier II OP, No. 011-00027    |
| PM-10      |            | 7.60E-06               | lb/scf | 0       | 7.82E-02                          | 0.00       | 0.34         | TICH II OF , IND. OT F COCE. |
| SO2        |            | 6.00E-07               | lb/scf | 0       | 6.18E-03                          | na         | na           | na na                        |
| 00         |            | 8.40E-05               | lb/scf | 0       | 8.65E-01                          | na         | na           | na                           |
| ,,,        |            |                        |        |         |                                   |            |              |                              |
| NOX        |            | 1.00E-04               | lb/scf | 0       | 1.03E+00                          | na         | na           | na                           |
|            |            |                        |        |         |                                   |            |              | <u> </u>                     |
| voc        |            | 5.50E-06               | lb/scf | 0       | 5.66E-02                          | na         | na           | na                           |
| -EAD       |            | 5.00E-10               | lb/scf | 0       | 5.15E-06                          | na         | na           | na                           |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EQUIP | PMENT DEHYDRA     | TION SOUTH B | OILER         |            |          |      |
|-------------------------------|-------------------|--------------|---------------|------------|----------|------|
| DEQ USE ONLY                  |                   |              |               |            |          |      |
| DEQ PLANT ID CODE             | DEQ PROC          | CESS CODE    |               | DEQ STACK  | (ID CODE |      |
| DEQ BUILDING CODE             | PRIMARY           | SCC          |               | SECONDAR   | YSCC     |      |
| DEQ SEGMENT CODE              |                   |              |               |            |          |      |
| PART A: GENERAL INFORMATIO    |                   |              |               |            |          |      |
| PROCESS CODE OR DESCRIPTION   | DEHYDRATION SOUT  | H BOILER     |               |            |          |      |
| STACK DESCRIPTION             | POINT             |              |               |            |          |      |
| BUILDING DESCRIPTION          | DEHYDRATION BOILE | R ROOM       |               |            |          |      |
| MANUFACTURER                  | HIGHLANDER        | MODEL 20     | 0-111         | DATE INSTA | ALLED    | 1973 |
|                               |                   |              |               | DATE LAST  | MODIFIED | 1973 |
| RATED CAPACITY (CHOOSE APPR   | ROPRIATE UNITS)   |              |               |            |          |      |
| MILLION BTU/HR 8.4            |                   | BURNER TYP   | E _           | 9          |          |      |
| 1000 LBS STEAM/HR             |                   | %            | USED FOR PROC | ESS        | 100      |      |

#### FUEL DATA

KILOWATTS HORSEPOWER

| PARAMETER                                | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|------------------------------------------|--------------|----------|----------------|-------|
| 1740                                     |              |          |                |       |
| FUEL CODE (SEE NOTE)                     | 11           | na*      | None           |       |
|                                          |              |          |                |       |
| PERCENT SULFUR                           | <0.001       | - %      |                |       |
|                                          |              |          |                |       |
| PERCENT ASH                              | 0            | %        |                |       |
| PERCENT NITROGEN                         | 3.4          | %        |                |       |
| PERCENT NITROGEN                         | 0.1          |          |                |       |
| PERCENT CARBON                           | 72.5         | %        |                |       |
|                                          |              |          |                | 1     |
| PERCENT HYDROGEN                         | 23.8         | %        |                |       |
|                                          |              | %        |                |       |
| PERCENT MOISTURE                         | 0            | 70       |                |       |
| HEAT CONTENT                             |              |          |                |       |
| (BTU/UNIT)                               | 1,020        | BTU/scf  |                |       |
|                                          |              |          |                |       |
| MAXIMUM HOURLY                           | 8235.29      |          |                |       |
| COMBUSTION RATE (UNITS/HR)               |              | SCF/HR   |                |       |
| Constant ANNUAL                          |              | 1        |                |       |
| NORMAL ANNUAL COMBUSTION RATE (UNITS/YR) | 72.14        | MMSCF/YR |                |       |
| *Not applicable                          |              |          |                |       |
| 1404 applicable                          |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);

07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;

% USED FOR SPACE HEAT

11) OTHER (SPECIFY)

FUEL CODES - 01) NATURAL GAS; 02) #1 OR #2 FUEL OIL; 03) #4 FUEL OIL; 04) #5 OR #6 FUEL OIL; 05) USED OIL

06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;

10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL

14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION SOUTH BOILER

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

#### POLI UTION CONTROL EQUIPMENT

| POLLUTION CONTROL EQUIPMENT    |              |           |
|--------------------------------|--------------|-----------|
| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

# VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| VENTILATION AND BUILDING/AREA DATA |                                          |       |
|------------------------------------|------------------------------------------|-------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | 2     |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 28    |
| BUILDING/AREA LENGTH (FT) 45       | STACK EXIT DIAMETER (FT)                 | 2.95  |
| BUILDING/AREA WIDTH (FT) 50        | STACK EXIT GAS FLOWRATE (ACFM)           | 1,880 |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | 380   |

### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT | ESTIMATED OR                      |             | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|------------------------|--------|---------|-----------------------------------|-------------|--------------|---------------------------|
| POLEOTANT |            | FACTOR<br>(SEE BELOW)* |        | CONTROL | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)**  | (TONS/YR)    | REFERENCE                 |
|           |            |                        |        |         |                                   |             |              |                           |
| PM        |            | 7.60E-06               | lb/scf | 0       | 6.26E-02                          | na          | na           | na                        |
|           |            |                        | 11-16  | 1 0     | 6.26E-02                          | 0.03        | 0.27         | Tier II OP, No. 011-00027 |
| PM-10     |            | 7.60E-06               | lb/scf | U       | 0.20E-02                          | 0.03        | 0.27         |                           |
| SO2       |            | 6.00E-07               | lb/scf | 0       | 4.94E-03                          | na          | na           | na                        |
| СО        |            | 8.40E-05               | lb/scf | 0       | 6.92E-01                          | na          | na           | na                        |
|           |            |                        |        |         |                                   | <del></del> | T            |                           |
| NOX       |            | 1.00E-04               | lb/scf | 0       | 8.24E-01                          | na          | na na        | na ·                      |
| voc       |            | 5.50E-06               | lb/scf | 0       | 4.53E-02                          | na          | na           | na                        |
| LEAD      |            | 5,00E-10               | lb/scf | 0       | 4.12E-06                          | na          | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL | BURNING FOURMENT | ī |
|-----------------|------------------|---|

DEHYDRATION AIR DRYER # 1 A STAGE

| DEO | LISE | ONI | ٧ |
|-----|------|-----|---|

| DEQ PLANT ID CODE | DEQ PROCESS CODE | DEQ STACK ID CODE |
|-------------------|------------------|-------------------|
| DEQ BUILDING CODE | PRIMARY SCC      | SECONDARY SCC     |

DEQ SEGMENT CODE

#### PART A: GENERAL INFORMATION

| STACK DESCRIPTION    | POINT       |                  |                    |
|----------------------|-------------|------------------|--------------------|
|                      |             |                  |                    |
| BUILDING DESCRIPTION | DEHYDRATION | DRYER ROOM 1,2,3 |                    |
| MANUFACTURER         | PROCTOR     | MODEL 432        | DATE INSTALLED 197 |

### RATED CAPACITY (CHOOSE APPROPRIATE UNITS)

| MILLION BTU/HR 6.4 | BURNER TYPE 10        |
|--------------------|-----------------------|
| 1000 LBS STEAM/HR  | % USED FOR PROCESS 1  |
| KILOWATTS          | % USED FOR SPACE HEAT |
| HORSEPOWER         |                       |

#### FUEL DATA

| DADAMETER                  | PRIMARY FUEL  | UNITS     | SECONDARY FUEL | UNITS    |
|----------------------------|---------------|-----------|----------------|----------|
| PARAMETER                  | FIXINIAKTIOLL | 311113    | 0200///// 020  |          |
| FUEL CODE (SEE NOTE)       | 1             | na*       | None           |          |
| 1022 0002 (0221111)        |               |           |                |          |
| PERCENT SULFUR             | <0.001        | %         |                |          |
|                            |               |           |                |          |
| PERCENT ASH                | 0             | %         |                |          |
|                            |               |           |                |          |
| PERCENT NITROGEN           | 3.4           | %         |                |          |
|                            |               | %         |                | 1        |
| PERCENT CARBON             | 72.5          | 76        | <u> </u>       |          |
| PERCENT HYDROGEN           | 23.8          | %         |                |          |
| PERCENT ATDROGEN           | 20.0          | ,,,       |                |          |
| PERCENT MOISTURE           | 0             | %         |                |          |
|                            |               |           |                |          |
| HEAT CONTENT               |               |           |                |          |
| (BTU/UNIT)                 | 1,020         | BTU/scf   |                |          |
|                            |               |           |                |          |
| MAXIMUM HOURLY             | 6274.51       |           |                |          |
| COMBUSTION RATE (UNITS/HR) |               | SCF/HR    |                |          |
|                            |               |           |                | Τ        |
| NORMAL ANNUAL              | 54.96         | MMSCF/YR  |                |          |
| COMBUSTION RATE (UNITS/YR) | 1 34.30       | MINOCITIE |                | <u> </u> |

\*Not applicable

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

# DEHYDRATION DRYER #1 STAGE A

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY | None | SECONDARY |  |
|--------------------------------|---------|------|-----------|--|
| TYPE CODE (FROM APP. A)        |         |      |           |  |
| MANUFACTURER                   |         |      |           |  |
| MODEL NUMBER                   |         |      |           |  |
| PRESSURE DROP (IN. OF WATER)   |         |      |           |  |
| WET SCRUBBER FLOW (GPM)        |         |      |           |  |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |         |      | <br>      |  |

## VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| ENCLOSED (Y/N)?           | N    | GROUND ELEVATION (FT)                  | 4,498  |
|---------------------------|------|----------------------------------------|--------|
| HOOD TYPE (FROM APP. B)   | NA   | UTM X COORDINATE (KM)                  | 388    |
| MINIMUM FLOW (ACFM)       | INA  | UTM Y COORDINATE (KM)                  | 4,784  |
| PERCENT CAPTURE EFFICIEN  |      | STACK TYPE (SEE NOTE BELOW)            | 2      |
|                           |      | STACK EXIT HEIGHT FROM GROUND LEVEL (F | 41     |
| BUILDING HEIGHT (FT)      | 16.5 |                                        |        |
| BUILDING/AREA LENGTH (FT) | 90   | STACK EXIT DIAMETER (FT)               | 2.6    |
| BUILDING/AREA WIDTH (FT)  | 80   | STACK EXIT GAS FLOWRATE (ACFM)         | 13,000 |
|                           |      | STACK EXIT TEMPERATURE (DEG. F)        | 187    |

### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| OLEG IVAL |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |                        |        | T                     | 1 775 00                          | T          |              |                           |
| PM        |            | 7.60E-06               | lb/scf | 0                     | 4.77E-02                          | na         | na           | na                        |
| PM-10     |            | 7.60E-06               | lb/scf | 0                     | 4.77E-02                          | 1.47       | 6.4          | Tier II OP, No. 011-00027 |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 3.76E-03                          | na         | na           | na                        |
| 002       |            |                        |        |                       |                                   |            |              |                           |
| CO        |            | 8.40E-05               | lb/scf | 0                     | 5.27E-01                          | na         | na           | na                        |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 6.27E-01                          | na         | na           | na                        |
|           |            |                        |        |                       | T - 155.00                        | T .        | I            |                           |
| voc       |            | 5.50E-06               | lb/scf | 0                     | 3.45E-02                          | na         | na           | j na                      |
| LEAD      |            | 5.00E-10               | lb/scf | 0                     | 3.14E-06                          | na         | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

SECTION 2: FUEL BURNING EQUIPMENT DEHYDRATION AIR DRYER # 1 B&C STAGE

| DEO | 1 | ISE | 0 | NII | ٧ |
|-----|---|-----|---|-----|---|

| DEQ PLANT ID CODE         | DEQ PRO           | CESS CODE        |              | DEQ STACK ID CODE  |      |
|---------------------------|-------------------|------------------|--------------|--------------------|------|
| DEG LEGITE GOLD           |                   |                  | <u></u>      |                    |      |
| DEQ BUILDING CODE         | PRIMARY           | scc              |              | SECONDARY SCC      |      |
| DEG BOILDING GODE         | _                 |                  |              |                    |      |
| DEQ SEGMENT CODE          | ٦                 |                  |              |                    |      |
| DEG CECIMENT CODE         |                   |                  |              |                    |      |
|                           |                   |                  |              |                    |      |
| PART A: GENERAL INFORMAT  | NON               |                  |              |                    |      |
| 174677                    |                   |                  |              |                    |      |
| PROCESS CODE OR DESCRIPT  | DEHYDRATION AIR I | ORYER # 1 B&C ST | AGE          |                    |      |
|                           |                   |                  |              |                    |      |
| STACK DESCRIPTION         | POINT             |                  |              |                    |      |
|                           |                   |                  |              |                    |      |
| BUILDING DESCRIPTION      | DEHYDRATION DRY   | ER ROOM 1,2,3    |              |                    |      |
|                           |                   |                  |              |                    |      |
| MANUFACTURER              | PROCTOR           | MODEL            | 432          | DATE INSTALLED     | 1973 |
|                           |                   |                  |              |                    | 4070 |
|                           |                   |                  |              | DATE LAST MODIFIED | 1973 |
|                           |                   |                  |              |                    |      |
| RATED CAPACITY (CHOOSE AP | PROPRIATE UNITS)  |                  |              |                    |      |
|                           | _                 |                  |              | ন                  |      |
| MILLION BTU/HR 2.         | <u>8</u> ]        | BURNER TYPE      | 1            | 0                  |      |
|                           |                   | [a. 116          | SED FOR BDOO | ESS 100            |      |
| 1000 LBS STEAM/HR         |                   | % US             | SED FOR PROC | 100                |      |

% USED FOR SPACE HEAT

### FUEL DATA

KILOWATTS HORSEPOWER

|                            |              |          | 1              |          |
|----------------------------|--------------|----------|----------------|----------|
| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS    |
|                            |              |          | N              | T        |
| FUEL CODE (SEE NOTE)       | 11           | na*      | None           | <u> </u> |
|                            |              | %        |                |          |
| PERCENT SULFUR             | <0.001       | 70       |                |          |
| DECORNIT ACIL              | 0            | %        |                |          |
| PERCENT ASH                |              |          |                |          |
| PERCENT NITROGEN           | 3.4          | %        |                |          |
|                            |              |          |                |          |
| PERCENT CARBON             | 72.5         | %        |                |          |
|                            |              |          |                | T        |
| PERCENT HYDROGEN           | 23.8         | %        | <u> </u>       | <u> </u> |
|                            |              | %        |                |          |
| PERCENT MOISTURE           | 0            | 70       |                | <u> </u> |
| LIEAT CONTENT              |              |          |                | ,        |
| HEAT CONTENT<br>(BTU/UNIT) | 1,020        | BTU/scf  |                |          |
| (BTO/ONIT)                 | 1,020        |          |                |          |
| MAXIMUM HOURLY             | 2745.10      |          |                |          |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                | <u> </u> |
|                            |              |          |                | 1        |
| NORMAL ANNUAL              |              |          |                |          |
| COMBUSTION RATE (UNITS/YR) | 24.05        | MMSCF/YR |                | L        |

\*Not applicable

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BÌTUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #1 STAGE B&C

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

## VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| VENTILATION AND BUILDING/AREA DATA | <del>- 1                                   </del> |       |
|------------------------------------|---------------------------------------------------|-------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                             | 4,498 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                             | 388   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                             | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)                       | 2     |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT)          | 41    |
| BUILDING/AREA LENGTH (FT) 90       | STACK EXIT DIAMETER (FT)                          | 2.95  |
| BUILDING/AREA WIDTH (FT) 80        | STACK EXIT GAS FLOWRATE (ACFM)                    | 8,000 |
|                                    | STACK EXIT TEMPERATURE (DEG. F)                   | 187   |
|                                    |                                                   |       |

# AIR POLLUTANT EMISSIONS

| OLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| OLLOTANT |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|          |            |                        |        |                       | 2.09E-02                          | na         | na           | na                        |
| PM       |            | 7.60E-06               | lb/scf | 0                     | 2.09E-02                          | ia         | i ia         | 1114                      |
| PM-10    |            | 7.60E-06               | lb/scf | 0                     | 2.09E-02                          | 0.65       | 2.8          | Tier II OP, No. 011-00027 |
|          |            |                        |        |                       | 1                                 | T          | l            |                           |
| SO2      |            | 6.00E-07               | lb/scf | 0                     | 1.65E-03                          | na         | na           | na                        |
| CO       |            | 8.40E-05               | lb/scf | 0                     | 2.31E-01                          | na         | na           | na                        |
| NOX      |            | 1.00E-04               | lb/scf | 0                     | 2.75E-01                          | na         | na           | na                        |
| NOX      |            |                        |        |                       |                                   |            |              |                           |
| VOC      |            | 5.50E-06               | lb/scf | 0                     | 1.51E-02                          | na         | na           | na                        |
|          |            | 5.00E-10               | lb/scf | 0                     | 1.37E-06                          | na         | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EQU | IPMENT DEHYDR     | ATION AIR DRYER # 2 A | STAGE |                    |      |
|-----------------------------|-------------------|-----------------------|-------|--------------------|------|
| DEQ USE ONLY                |                   |                       |       |                    |      |
| DEQ PLANT ID CODE           | DEQ PRO           | OCESS CODE            | ]     | DEQ STACK ID CODE  |      |
| DEQ BUILDING CODE           | PRIMARY           | SCC                   |       | SECONDARY SCC      |      |
| DEQ SEGMENT CODE            | ]                 |                       |       |                    |      |
| PART A: GENERAL INFORMAT    | ION               |                       |       |                    |      |
| PROCESS CODE OR DESCRIPTION | DEHYDRATION AIR I | DRYER # 2 A STAGE     |       |                    |      |
| STACK DESCRIPTION           | POINT             |                       |       |                    |      |
| BUILDING DESCRIPTION        | DEHYDRATION DRY   | ER ROOM 1,2,3         |       |                    |      |
| MANUFACTURER                | PROCTOR           | MODEL 43              | 2     | DATE INSTALLED     | 1973 |
|                             |                   |                       |       | DATE LAST MODIFIED | 1973 |
| RATED CAPACITY (CHOOSE APP  | ROPRIATE UNITS)   |                       |       |                    |      |
| MILLION BTU/HR 6.4          | ]                 | BURNER TYPE           | 10    | ]                  |      |

% USED FOR PROCESS

% USED FOR SPACE HEAT

100

# FUEL DATA

KILOWATTS
HORSEPOWER

1000 LBS STEAM/HR

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|----------------------------|--------------|----------|----------------|-------|
|                            |              |          |                |       |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           |       |
|                            |              |          |                |       |
| PERCENT SULFUR             | <0.001       | %        |                |       |
|                            |              |          |                |       |
| PERCENT ASH                | 0            | %        |                |       |
| The second supposed        | 3.4          | %        |                |       |
| PERCENT NITROGEN           | 3.4          | 70       |                | 1     |
| PERCENT CARBON             | 72.5         | %        |                |       |
|                            |              | 1 0/     |                | Т     |
| PERCENT HYDROGEN           | 23.8         | %        |                |       |
| PERCENT MOISTURE           | 0            | %        |                |       |
| HEAT CONTENT               | T            |          |                |       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |       |
|                            |              |          |                |       |
| MAXIMUM HOURLY             | 6274.51      |          |                |       |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                |       |
| NORMAL ANNUAL              | T            |          |                | 1     |
| COMBUSTION RATE (UNITS/YR) | 54.96        | MMSCF/YR |                |       |
| *Not applicable            |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);

07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZÓNTALLY FIRED; 10) AXIALLY FIRED;

11).OTHER (SPECIFY)

FUEL CODES - 01) NATURAL GAS; 02) #1 OR #2 FUEL OIL; 03) #4 FUEL OIL; 04) #5 OR #6 FUEL OIL; 05) USED OIL

06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;

10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL

14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #2 STAGE A

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAY/WEEK 7         |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

## POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

### VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| 017,611271171                            |                                                                                                                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                                                |
| UTM X COORDINATE (KM)                    | 388                                                                                                                                                                                                  |
| UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                                                |
| STACK TYPE (SEE NOTE BELOW)              | 2                                                                                                                                                                                                    |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 41                                                                                                                                                                                                   |
| STACK EXIT DIAMETER (FT)                 | 2.6                                                                                                                                                                                                  |
| STACK EXIT GAS FLOWRATE (ACFM)           | 13,000                                                                                                                                                                                               |
| STACK EXIT TEMPERATURE (DEG. F)          | 187                                                                                                                                                                                                  |
|                                          | GROUND ELEVATION (FT)  UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT)  STACK EXIT GAS FLOWRATE (ACFM) |

# AIR POLLUTANT EMISSIONS

| OLLUTANT    | CAS NUMBER | EMISSION               | Units  | PERCENT | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-------------|------------|------------------------|--------|---------|-----------------------------------|------------|--------------|---------------------------|
| OLLO IVILLI |            | FACTOR<br>(SEE BELOW)* |        | CONTROL | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|             |            |                        |        |         |                                   |            |              |                           |
| PM          |            | 7.60E-06               | lb/scf | 0       | 4.77E-02                          | na         | na           | na                        |
|             |            |                        |        |         | 1 775 00                          | 4.47       | 6.4          | Tier II OP, No. 011-00027 |
| PM-10       |            | 7.60E-06               | lb/scf | 0       | 4.77E-02                          | 1.47       | 0.4          | TIEL II OF, NO. 011-00027 |
|             |            | T 225 27 T             | B- t t | 0       | 3,76E-03                          | na         | na           | na                        |
| SO2         |            | 6.00E-07               | lb/scf |         | 3.70E-03                          | πα         | l III        |                           |
| co          |            | 8.40E-05               | lb/scf | 0       | 5.27E-01                          | na         | na ·         | na                        |
|             |            |                        |        |         |                                   |            |              |                           |
| NOX         |            | 1.00E-04               | lb/scf | . 0     | 6.27E-01                          | na         | na           | na                        |
|             |            |                        |        |         |                                   |            |              |                           |
| VOC         |            | 5.50E-06               | lb/scf | 0       | 3.45E-02                          | na         | na           | na                        |
|             |            |                        |        |         |                                   |            |              |                           |
| LEAD        |            | 5,00E-10               | lb/scf | 0       | 3.14E-06                          | na         | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

SECTION 2: FUEL BURNING EQUIPMENT DEHYDRATION AIR DRYER # 2 B&C STAGE

| DFO | HOL | ONII | v |
|-----|-----|------|---|
|     |     |      |   |

| DEQ PLANT ID CODE | DEQ PROCESS CODE | DEQ STACK ID CODE |
|-------------------|------------------|-------------------|
| DEQ BUILDING CODE | PRIMARY SCC      | SECONDARY SCC     |
| DEQ SEGMENT CODE  |                  |                   |

### PART A: GENERAL INFORMATION

| STACK DESCRIPTION    | POINT                        |           |                |      |  |  |
|----------------------|------------------------------|-----------|----------------|------|--|--|
|                      |                              |           |                |      |  |  |
| BUILDING DESCRIPTION | DEHYDRATION DRYER ROOM 1,2,3 |           |                |      |  |  |
| MANUFACTURER         | PROCTOR                      | MODEL 432 | DATE INSTALLED | 1973 |  |  |

# RATED CAPACITY (CHOOSE APPROPRIATE UNITS)

| MILLION BTU/HR 2.8 | BURNER TYPE 10        |
|--------------------|-----------------------|
| 1000 LBS STEAM/HR  | % USED FOR PROCESS    |
| KILOWATTS          | % USED FOR SPACE HEAT |
| HORSEPOWER         |                       |

### FUEL DATA

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|----------------------------|--------------|----------|----------------|-------|
|                            |              |          |                |       |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           |       |
|                            |              |          |                |       |
| PERCENT SULFUR             | <0.001       | %        |                |       |
|                            |              |          |                |       |
| PERCENT ASH                | 0            | %        |                |       |
|                            |              |          |                |       |
| PERCENT NITROGEN           | 3.4          | %        |                |       |
|                            |              | A        |                |       |
| PERCENT CARBON             | 72.5         | %        |                |       |
|                            |              |          |                |       |
| PERCENT HYDROGEN           | 23.8         | %        |                |       |
|                            |              |          |                |       |
| PERCENT MOISTURE           | 0            | %        |                |       |
|                            |              |          |                |       |
| HEAT CONTENT               |              |          |                |       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |       |
|                            |              |          |                | ,     |
| MAXIMUM HOURLY             | 2745.10      |          |                |       |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                |       |
|                            |              |          |                |       |
| NORMAL ANNUAL              |              |          |                |       |
| COMBUSTION RATE (UNITS/YR) | 24.05        | MMSCF/YR |                |       |
|                            | L            |          |                |       |

\*Not applicable

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #2 STAGE B&C

## OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAYWEEK            | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY | None | SECONDA | RY |  |
|--------------------------------|---------|------|---------|----|--|
| TYPE CODE (FROM APP. A)        |         |      |         |    |  |
| MANUFACTURER                   |         |      |         |    |  |
| MODEL NUMBER                   |         |      |         |    |  |
| PRESSURE DROP (IN. OF WATER)   |         |      |         |    |  |
| WET SCRUBBER FLOW (GPM)        |         |      |         |    |  |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |         |      | <br>    |    |  |

#### VENTILATION AND BUILDING/AREA DATA

| STACK | DATA |
|-------|------|
|       |      |

| VENTILATION AND BUILDING AREA D | 010  |                                          |       |
|---------------------------------|------|------------------------------------------|-------|
| ENCLOSED (Y/N)? N               |      | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B) NA      |      | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM) NA          |      | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA   |      | STACK TYPE (SEE NOTE BELOW)              | 2     |
| BUILDING HEIGHT (FT)            | 16.5 | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 41    |
| BUILDING/AREA LENGTH (FT)       | 90   | STACK EXIT DIAMETER (FT)                 | 2.95  |
| BUILDING/AREA WIDTH (FT)        | 80   | STACK EXIT GAS FLOWRATE (ACFM)           | 8,000 |
|                                 |      | STACK EXIT TEMPERATURE (DEG. F)          | 187   |

# AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER              | EMISSION     | Units  | PERCENT                 | ESTIMATED OR |            | ALLOWABLE EM | SSIONS                    |
|-----------|-------------------------|--------------|--------|-------------------------|--------------|------------|--------------|---------------------------|
| POLLOTANT |                         | FACTOR       |        | CONTROL                 | MEASURED     |            |              |                           |
|           |                         | (SEE BELOW)* |        | EFFICIENCY              | EMISSIONS    | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           | i                       |              |        |                         | (LBS/HR)     |            |              |                           |
|           |                         |              |        |                         | ·            |            |              |                           |
| PM        |                         | 7.60E-06     | lb/scf | 0                       | 2.09E-02     | na         | na ·         | na                        |
|           |                         |              |        |                         | 1 2005.00    | 0.65       | 2.8          | Tier II OP, No. 011-00027 |
| PM-10     |                         | 7.60E-06     | lb/scf | 0                       | 2.09E-02     | 0.65       | 2.0          | TIEL II OP, NO. 011-00021 |
|           |                         | 6.00E-07     | lb/scf | 0                       | 1.65E-03     | na         | na           | na                        |
| SO2       |                         | 6.00E-07     | ID/SCI |                         | 1.832 00     |            | ,,,,         |                           |
| СО        |                         | 8.40E-05     | lb/scf | 0                       | 2.31E-01     | na         | na           | na                        |
| -         |                         |              |        |                         |              |            |              |                           |
| NOX       |                         | 1.00E-04     | lb/scf | 0                       | 2.75E-01     | na         | na           | na                        |
|           |                         |              |        |                         |              | ,          |              |                           |
| VOC       |                         | 5.50E-06     | lb/scf | 0                       | 1.51E-02     | na         | na           | na                        |
|           |                         |              |        |                         | 1 4077.00    |            |              |                           |
| LEAD      | 1D 40 7-11-4 4 4 2 4000 | 5.00E-10     | lb/scf | d particulate emissions | 1.37E-06     | na         | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

SECTION 2: FUEL BURNING EQUIPMENT DEHYDRATION AIR DRYER # 3 A STAGE

| DEO | 1100 | ON | v |
|-----|------|----|---|
|     |      |    |   |

| DEQ PLANT ID CODE | DEQ PROCESS CODE | DEQ STACK ID CODE |
|-------------------|------------------|-------------------|
| DEQ BUILDING CODE | PRIMARY SCC      | SECONDARY SCC     |
| DEQ SEGMENT CODE  |                  |                   |

### PART A: GENERAL INFORMATION

| STACK DESCRIPTION    | POINT       |                  |                |     |
|----------------------|-------------|------------------|----------------|-----|
| BUILDING DESCRIPTION | DEHYDRATION | DRYER ROOM 1,2,3 |                |     |
| MANUFACTURER         | PROCTOR     | MODEL 432        | DATE INSTALLED | 197 |

### RATED CAPACITY (CHOOSE APPROPRIATE UNITS)

| MILLION BTU/HR 6.4 | BURNER TYPE 10        |
|--------------------|-----------------------|
| 1000 LBS STEAM/HR  | % USED FOR PROCESS    |
| KILOWATTS          | % USED FOR SPACE HEAT |
| HORSEPOWER         |                       |

### FUEL DATA

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|----------------------------|--------------|----------|----------------|-------|
| I DIVINICE LEIV            | T TAIN STATE | 1 2      | 1222           | 1     |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           |       |
|                            |              |          |                |       |
| PERCENT SULFUR             | <0.001       | %        |                |       |
|                            |              |          |                | ·     |
| PERCENT ASH                | 0            | %        |                |       |
|                            |              |          |                | I     |
| PERCENT NITROGEN           | 3.4          | %        |                |       |
| PERCENT CARBON             | 72.5         | %        |                |       |
| PERCENT CARBON             | 72.0         | ,,       |                |       |
| PERCENT HYDROGEN           | 23.8         | %        |                |       |
|                            |              |          |                |       |
| PERCENT MOISTURE           | 0            | %        |                |       |
|                            |              |          | <u></u>        | T     |
| HEAT CONTENT               |              |          |                |       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |       |
| MAXIMUM HOURLY             | 6274.51      |          |                |       |
| COMBUSTION RATE (UNITS/HR) | l            | SCF/HR   |                |       |
|                            |              |          |                |       |
| NORMAL ANNUAL              |              |          |                |       |
| COMBUSTION RATE (UNITS/YR) | 54.96        | MMSCF/YR |                |       |

<sup>\*</sup>Not applicable

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #3 STAGE A

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYMEEK            |
| JUN-AUG 25                           | WEEKS/YEAR 36      |
| SEP-NOV 25                           |                    |

### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE               | PRIMARY None | SECONDARY |
|------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)      |              |           |
| MANUFACTURER                 |              |           |
| MODEL NUMBER                 |              |           |
| PRESSURE DROP (IN. OF WATER) |              |           |
| WET SCRUBBER FLOW (GPM)      |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FP | M)           |           |

### VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LITM X COORDINATE (KM)                   | 388                                                                                                                                                                           |
| OTHER COURT DIVERTE (INIT)               |                                                                                                                                                                               |
| UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                         |
| STACK TYPE (SEE NOTE BELOW)              | 2                                                                                                                                                                             |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 41                                                                                                                                                                            |
| STACK EXIT DIAMETER (FT)                 | 2.6                                                                                                                                                                           |
| STACK EXIT GAS FLOWRATE (ACFM)           | 13,000                                                                                                                                                                        |
| STACK EXIT TEMPERATURE (DEG. F)          | 187                                                                                                                                                                           |
|                                          | UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT)  STACK EXIT GAS FLOWRATE (ACFM) |

## AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units     | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|------------------------|-----------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| 0205,7411 |            | FACTOR<br>(SEE BELOW)* |           | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |                        |           |                       | 4.775.00                          | T          | na           | na                        |
| PM        |            | 7.60E-06               | lb/scf    | 0                     | 4.77E-02                          | na         | na           | 110                       |
| PM-10     |            | 7.60E-06               | lb/scf    | 0                     | 4.77E-02                          | 1.47       | 6.4          | Tier II OP, No. 011-00027 |
| SO2       |            | 6.00E-07               | lb/scf    | 0                     | 3.76E-03                          | na         | na           | na                        |
|           |            |                        |           |                       |                                   |            |              |                           |
| CO        |            | 8.40E-05               | lb/scf    | 0                     | 5.27E-01                          | na         | na           | na                        |
| NOX       |            | 1.00E-04               | lb/scf    | 0                     | 6.27E-01                          | na         | na           | na                        |
|           |            | F 505 00               | lle to ef | 0                     | 3.45E-02                          | na         | na           | na                        |
| VOC       |            | 5.50E-06               | lb/scf    | <u> </u>              | 3.40E-02                          | I IIG      | I III        | 1104                      |
| LEAD      |            | 5.00E-10               | lb/scf    | 0                     | 3.14E-06                          | na         | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FLIFE | BURNING FOURMENT |
|------------------|------------------|

DEHYDRATION AIR DRYER #3 B&C STAGE

| DEO | ı | ISE | - 0 | M | l Y |
|-----|---|-----|-----|---|-----|

| DEQ PLANT ID CODE           | DEQ PRO           | CESS COD  | E              | DEQ STACK ID CODE  |      |
|-----------------------------|-------------------|-----------|----------------|--------------------|------|
| DEQ BUILDING CODE           | PRIMARY           | scc       |                | SECONDARY SCC      |      |
| DEQ SEGMENT CODE            | ]                 |           |                |                    |      |
| PART A: GENERAL INFORMAT    | ION               |           |                |                    |      |
| PROCESS CODE OR DESCRIPTION | DEHYDRATION AIR D | ORYER#3E  | &C STAGE       |                    |      |
| STACK DESCRIPTION           | POINT             |           |                |                    |      |
| BUILDING DESCRIPTION        | DEHYDRATION DRY   | ER ROOM 4 | &5             |                    |      |
| MANUFACTURER                | PROCTOR           | MODEL     | NONE           | DATE INSTALLED     | 1989 |
|                             |                   |           |                | DATE LAST MODIFIED | 1989 |
| RATED CAPACITY (CHOOSE APP  | ROPRIATE UNITS)   |           |                |                    |      |
| MILLION BTU/HR 2.8          |                   | BURNER    | TYPE           | 10                 |      |
| 1000 LBS STEAM/HR           | ]                 |           | % USED FOR PRO | DCESS 100          |      |
| KILOWATTS                   | ]                 |           | % USED FOR SPA | ACE HEAT           |      |

### FUEL DATA

HORSEPOWER

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|----------------------------|--------------|----------|----------------|-------|
|                            |              |          |                |       |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           |       |
|                            |              |          |                | 1     |
| PERCENT SULFUR             | <0.001       | %        |                | l J   |
|                            |              | T        |                |       |
| PERCENT ASH                | 0            | %        |                |       |
| PERCENT NITROGEN           | 3.4          | %        |                |       |
| PERCENT NITROGEN           | 0.4          | 70       |                |       |
| PERCENT CARBON             | 72.5         | %        |                |       |
|                            |              |          |                |       |
| PERCENT HYDROGEN           | 23.8         | %        |                |       |
|                            | 0            | %        |                |       |
| PERCENT MOISTURE           | U            | 70       |                |       |
| HEAT CONTENT               |              |          |                |       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |       |
|                            |              |          |                |       |
| MAXIMUM HOURLY             | 2745.10      |          |                |       |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                |       |
| NORMAL ANNUAL              |              |          |                |       |
| COMBUSTION RATE (UNITS/YR) | 24.05        | MMSCF/YR |                |       |
| *Not applicable            |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #3 STAGE B&C

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAYNVEEK           | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

## VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| VENTILATION AND BUILDING/AREA DATA | OTACKDATA                                |       |
|------------------------------------|------------------------------------------|-------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | 2     |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 41    |
| BUILDING/AREA LENGTH (FT) 90       | STACK EXIT DIAMETER (FT)                 | 2.6   |
| BUILDING/AREA WIDTH (FT) 80        | STACK EXIT GAS FLOWRATE (ACFM)           | 8,670 |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | 187   |
|                                    |                                          |       |

## AIR POLLUTANT EMISSIONS

| POLLUTANT  | CAS NUMBER               | EMISSION               | Units  | PERCENT                 | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|------------|--------------------------|------------------------|--------|-------------------------|-----------------------------------|------------|--------------|---------------------------|
| OLLO IAIVI |                          | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY   | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|            |                          |                        |        |                         |                                   |            |              |                           |
| PM         |                          | 7.60E-06               | lb/scf | 0                       | 2.09E-02                          | na         | na           | na                        |
|            |                          |                        |        |                         |                                   |            | 1            | T                         |
| PM-10      |                          | 7.60E-06               | lb/scf | 0                       | 2.09E-02                          | 0.65       | 2.8          | Tier II OP, No. 011-00027 |
|            |                          |                        |        |                         | 1.055.00                          |            | na           | na                        |
| SO2        |                          | 6.00E-07               | lb/scf | 0                       | 1.65E-03                          | na         | na           | i ia                      |
| co         |                          | 8.40E-05               | lb/scf | 0                       | 2.31E-01                          | na         | na           | na                        |
|            |                          |                        |        |                         |                                   |            |              |                           |
| NOX        |                          | 1.00E-04               | lb/scf | 0                       | 2.75E-01                          | na         | na           | na                        |
|            |                          |                        |        | ·                       | 1 1 1 1 2 2 2 2 2                 | т          | r            | T                         |
| VOC        | •                        | 5,50E-06               | lb/scf | 0                       | 1.51E-02                          | na         | na           | na                        |
| [          |                          | 5.00E-10               | lb/scf |                         | 1.37E-06                          | na         | na           | na                        |
| LEAD       | AD 40 Telle 1 4 1 2 1000 |                        |        | ng and particulate emis |                                   |            |              | 1                         |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL | RURNING | FOUIPMENT |
|-----------------|---------|-----------|

DEHYDRATION AIR DRYER # 4 A STAGE

|  | ONLY |
|--|------|
|  |      |
|  |      |

| DEQ PLANT ID CODE           | DEQ PRO           | OCESS CODE        | DEQ STACK ID CODE  |      |
|-----------------------------|-------------------|-------------------|--------------------|------|
| DEQ BUILDING CODE           | PRIMARY           | scc               | SECONDARY SCC      |      |
| DEQ SEGMENT CODE            | ]                 |                   |                    |      |
| PART A: GENERAL INFORMAT    |                   |                   |                    |      |
| PROCESS CODE OR DESCRIPTION | DEHYDRATION AIR [ | DRYER # 4 A STAGE |                    |      |
| STACK DESCRIPTION           | POINT             |                   |                    |      |
| BUILDING DESCRIPTION        | DEHYDRATION DRY   | ER ROOM 4&5       |                    |      |
| MANUFACTURER                | PROCTOR           | MODEL NONE        | DATE INSTALLED     | 1989 |
|                             |                   |                   | DATE LAST MODIFIED | 1989 |
| RATED CAPACITY (CHOOSE APP  | PROPRIATE UNITS)  |                   |                    |      |
| MILLION BTU/HR 4.77         |                   | BURNER TYPE       | 10                 |      |
| 1000 LBS STEAM/HR           |                   | % USED FOR        | PROCESS 100        |      |
| KILOWATTS                   | ]                 | % USED FOR        | SPACE HEAT         |      |

### FUEL DATA

HORSEPOWER

| DADAMETED                   | PRIMARY FUEL   | UNITS       | SECONDARY FUEL  | UNITS |
|-----------------------------|----------------|-------------|-----------------|-------|
| PARAMETER                   | FIXINIAIX FUEL | UNITO       | OLGGINDAITTIGLE |       |
| FUEL CODE (SEE NOTE)        | 1              | na*         | None            |       |
| FUEL CODE (SEE NOTE)        |                | 110         | 11010           |       |
| PERCENT SULFUR              | <0.001         | %           |                 |       |
| I ENGLINI GOLI GIL          |                |             |                 |       |
| PERCENT ASH                 | 0              | %           |                 |       |
|                             |                |             |                 |       |
| PERCENT NITROGEN            | 3.4            | %           |                 |       |
|                             |                |             |                 |       |
| PERCENT CARBON              | 72.5           | %           |                 |       |
|                             |                |             |                 |       |
| PERCENT HYDROGEN            | 23.8           | %           |                 |       |
|                             |                |             |                 |       |
| PERCENT MOISTURE            | 0              | %           |                 |       |
|                             |                | <del></del> |                 |       |
| HEAT CONTENT                | 4 000          | BTU/scf     |                 |       |
| (BTU/UNIT)                  | 1,020          | BTU/SCI     |                 |       |
| MAXIMUM HOURLY              | 4676.47        | 1           |                 |       |
| COMBUSTION RATE (UNITS/HR)  | 4070.47        | SCF/HR      |                 |       |
| COMBUSTION RATE (CINITONIN) |                | 00171111    |                 |       |
| NORMAL ANNUAL               |                |             |                 |       |
| COMBUSTION RATE (UNITS/YR)  | 40.97          | MMSCF/YR    |                 |       |
| *Not applicable             |                |             |                 |       |
|                             |                |             |                 |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #4 STAGE A

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAYWEEK            | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

### VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| VENTILATION AND BUILDING/AREA DATA | o more of the control |        |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,498  |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 388    |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,784  |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2      |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41     |
| BUILDING/AREA LENGTH (FT) 130      | STACK EXIT DIAMETER (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6    |
| BUILDING/AREA WIDTH (FT) 80        | STACK EXIT GAS FLOWRATE (ACFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,800 |
|                                    | STACK EXIT TEMPERATURE (DEG. F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

## AIR POLLUTANT EMISSIONS

| POLLUTANT  | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0220 17411 |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |            | 7 605 06               | lb/scf |                       | 3,55E-02                          | na         | na           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PM         |            | 7.60E-06               | ID/SCI | U                     | 3,33L-02                          | ΠQ         | Πü           | The state of the s |
| PM-10      |            | 7.60E-06               | lb/scf | 0                     | 3.55E-02                          | 1.1        | 4.8          | Tier II OP, No. 011-00027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |            |                        |        |                       |                                   |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SO2        |            | 6.00E-07               | lb/scf | 0                     | 2.81E-03                          | na         | na           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| СО         |            | 8.40E-05               | lb/scf | 0                     | 3.93E-01                          | na         | na           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |            |                        |        |                       |                                   |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOX        |            | 1.00E-04               | lb/scf | 0                     | 4.68E-01                          | na         | na           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1/00       |            | 5.50E-06               | lb/scf | 0                     | 2.57E-02                          | na         | na           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| voc        |            | 0.50L-00               | 10/301 | <u> </u>              |                                   | <u> </u>   | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LEAD       | - T        | 5.00E-10               | lb/scf | 0                     | 2.34E-06                          | na         | na           | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FL | IFI BUR | NING FO | NUIPMENT |
|---------------|---------|---------|----------|

DEHYDRATION AIR DRYER # 4 B STAGE

| DEQ USE ONLY             |                   |                      |                    |      |
|--------------------------|-------------------|----------------------|--------------------|------|
| DEQ PLANT ID CODE        | DEQ F             | PROCESS CODE         | DEQ STACK ID CODE  |      |
| DEQ BUILDING CODE        | PRIMA             | ARY SCC              | SECONDARY SCC      |      |
| DEQ SEGMENT CODE         |                   |                      |                    |      |
| PART A: GENERAL INFORM   | 1ATION            |                      |                    |      |
| PROCESS CODE OR DESCRI   | TIC DEHYDRATION A | IR DRYER # 4 B STAGE |                    |      |
| STACK DESCRIPTION        | POINT             |                      |                    |      |
| BUILDING DESCRIPTION     | DEHYDRATION D     | RYER ROOM 4&5        |                    |      |
| MANUFACTURER             | PROCTOR           | MODEL NONE           | DATE INSTALLED     | 1989 |
|                          |                   |                      | DATE LAST MODIFIED | 1989 |
| RATED CAPACITY (CHOOSE A | APPROPRIATE UNITS | )                    |                    |      |

BURNER TYPE

10

% USED FOR PROCESS

% USED FOR SPACE HEAT

### FUEL DATA

KILOWATTS
HORSEPOWER

MILLION BTU/HR

1000 LBS STEAM/HR

|                            |              | LINUTO   | SECONDARY FUEL | UNITS    |
|----------------------------|--------------|----------|----------------|----------|
| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDART FUEL | UNITO    |
|                            | <del></del>  |          | Name           |          |
| FUEL CODE (SEE NOTE)       | 11           | na*      | None           |          |
|                            |              | T - 2/   |                |          |
| PERCENT SULFUR             | <0.001       | %        |                |          |
|                            |              |          |                |          |
| PERCENT ASH                | 0            | %%       |                | <u> </u> |
|                            |              |          |                | T        |
| PERCENT NITROGEN           | 3.4          | %        |                | L        |
|                            |              | T        |                |          |
| PERCENT CARBON             | 72.5         | %        |                |          |
|                            |              |          |                |          |
| PERCENT HYDROGEN           | 23.8         | %        |                | J        |
|                            |              |          |                | T        |
| PERCENT MOISTURE           | 0            | %        | J              |          |
|                            |              |          |                |          |
| HEAT CONTENT               |              | DTIV 4   |                |          |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |          |
|                            |              |          | 1              | T        |
| MAXIMUM HOURLY             | 323.53       | 205110   |                |          |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                |          |
|                            |              |          | 1              |          |
| NORMAL ANNUAL              |              | MMCCENE  |                |          |
| COMBUSTION RATE (UNITS/YR) | 2.83         | MMSCF/YR |                |          |
| *Not applicable            |              |          |                |          |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #4 STAGE B

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

# VENTILATION AND BUILDING/AREA DATA

|                            | · · |      |
|----------------------------|-----|------|
| ENCLOSED (Y/N)?            | N   |      |
|                            |     |      |
| HOOD TYPE (FROM APP. B)    | NA  |      |
|                            |     |      |
| MINIMUM FLOW (ACFM)        | NA  |      |
|                            |     |      |
| PERCENT CAPTURE EFFICIENCY | NA  |      |
|                            |     |      |
| BUILDING HEIGHT (FT)       |     | 16.5 |
| DOILDING TIESCHI (1.1)     |     |      |
| BUILDING/AREA LENGTH (FT)  | Τ - | 130  |
| BUILDING/AREA LENGTH (1-1) |     |      |
| THE PROPERTY OF THE CETY   |     | 80   |
| BUILDING/AREA WIDTH (FT)   | Ь_  | ٥٥   |

### STACK DATA

| STACK DATA                               |       |
|------------------------------------------|-------|
| GROUND ELEVATION (FT)                    | 4,498 |
|                                          |       |
| UTM X COORDINATE (KM)                    | 388   |
|                                          |       |
| UTM Y COORDINATE (KM)                    | 4,784 |
| OTACK TYPE (CEE NOTE BELOW)              | 2     |
| STACK TYPE (SEE NOTE BELOW)              |       |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 23    |
|                                          |       |
| STACK EXIT DIAMETER (FT)                 | 2     |
| STACK EXIT GAS FLOWRATE (ACFM)           | 4,000 |
|                                          |       |
| STACK EXIT TEMPERATURE (DEG. F)          | 150   |

## AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| OLLUTANI  | Nomber     | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |                        |        |                       |                                   |            |              |                           |
| PM        |            | 7.60E-06               | lb/scf | 0                     | 2.46E-03                          | na         | na           | na                        |
| 1 (4)     |            |                        |        |                       |                                   |            |              |                           |
| PM-10     |            | 7.60E-06               | lb/scf | 0                     | 2.46E-03                          | 0.47       | 2.1          | Tier II OP, No. 011-00027 |
| 1 141-10  |            |                        |        |                       |                                   |            |              |                           |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 1.94E-04                          | na         | na           | na na                     |
| 002       |            |                        |        |                       |                                   |            |              |                           |
| co        |            | 8.40E-05               | lb/scf | 0                     | 2.72E-02                          | na         | na           | na                        |
| 00        |            |                        |        |                       |                                   |            |              |                           |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 3.24E-02                          | na         | na           | na                        |
| NOX       |            |                        |        | <u> </u>              |                                   |            |              |                           |
| VOC       |            | 5.50E-06               | lb/scf | 0                     | 1.78E-03                          | na         | na           | na                        |
| ¥00       | _          |                        |        |                       |                                   |            |              |                           |
| LEAD      |            | 5.00E-10               | lb/scf | 0                     | 1.62E-07                          | na         | na           | na                        |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

SECTION 2: FUEL BURNING EQUIPMENT DEHYDRATION AIR DRYER # 4 C STAGE

| DEO | 115 | FC | IIA | v |
|-----|-----|----|-----|---|

| DEQ PLANT ID CODE      | DEQ               | PROCESS CODE          | DEG STACK ID CODE |      |
|------------------------|-------------------|-----------------------|-------------------|------|
| DEQ BUILDING CODE      | PRIM              | MARY SCC              | SECONDARY SCC     |      |
| DEQ SEGMENT CODE       |                   |                       |                   |      |
| PART A: GENERAL INFORM | MATION            |                       |                   |      |
| PROCESS CODE OR DESCRI | PTIC DEHYDRATION. | AIR DRYER # 4 B STAGE |                   |      |
|                        |                   |                       |                   |      |
| STACK DESCRIPTION      | POINT             |                       |                   |      |
|                        |                   |                       |                   |      |
| BUILDING DESCRIPTION   | DEHYDRATION       | DRYER ROOM 4&5        |                   |      |
|                        |                   |                       |                   |      |
| MANUFACTURER           | PROCTOR           | MODEL NONE            | DATE INSTALLED .  | 1989 |
| L                      |                   |                       |                   |      |

DATE LAST MODIFIED

| RATED CAPACITY (CHOOSE APPROPRIATE ONTS) | )                     |     |
|------------------------------------------|-----------------------|-----|
| MILLION BTU/HR 0.3                       | BURNER TYPE 10        |     |
| 1000 LBS STEAM/HR                        | % USED FOR PROCESS    | 100 |
| KILOWATTS                                | % USED FOR SPACE HEAT |     |
| HORSEPOWER                               |                       |     |

#### FUEL DATA

|                            |              |          |                | 1                                     |
|----------------------------|--------------|----------|----------------|---------------------------------------|
| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS                                 |
|                            |              |          |                |                                       |
| FUEL CODE (SEE NOTE)       | 11           | na*      | None           |                                       |
|                            |              |          |                | · · · · · · · · · · · · · · · · · · · |
| PERCENT SULFUR             | <0.001       | %        |                |                                       |
|                            |              |          |                | ····                                  |
| PERCENT ASH                | 0            | %        |                | L                                     |
|                            |              |          |                |                                       |
| PERCENT NITROGEN           | 3.4          | %        |                |                                       |
|                            |              |          |                |                                       |
| PERCENT CARBON             | 72.5         | %        |                |                                       |
|                            |              |          |                |                                       |
| PERCENT HYDROGEN           | 23.8         | %        |                | l                                     |
|                            |              |          |                |                                       |
| PERCENT MOISTURE           | 0            | %        |                |                                       |
|                            |              |          |                |                                       |
| HEAT CONTENT               |              |          |                |                                       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |                                       |
|                            |              |          |                |                                       |
| MAXIMUM HOURLY             | 294.12       |          |                |                                       |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                |                                       |
|                            |              |          |                |                                       |
| NORMAL ANNUAL              |              |          |                |                                       |
| COMBUSTION RATE (UNITS/YR) | 2.58         | MMSCF/YR |                |                                       |
|                            |              |          |                |                                       |

<sup>\*</sup>Not applicable

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #4 STAGE C

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAY/WEEK           | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY  | None | SECONDARY |
|--------------------------------|----------|------|-----------|
| TYPE CODE (FROM APP. A)        |          |      |           |
| MANUFACTURER                   | <u> </u> |      |           |
| MODEL NUMBER                   |          |      |           |
| PRESSURE DROP (IN. OF WATER)   |          |      |           |
| WET SCRUBBER FLOW (GPM)        |          |      |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |          |      |           |

#### VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| VENTILATION AND BUILDING/AREA | DATA | GIACKBATA                                |       |
|-------------------------------|------|------------------------------------------|-------|
| ENCLOSED (Y/N)?               |      | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B)       | A    | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM)           | IA   | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY N  | IA . | STACK TYPE (SEE NOTE BELOW)              | 2     |
| BUILDING HEIGHT (FT)          | 16.5 | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 23    |
| BUILDING/AREA LENGTH (FT)     | 130  | STACK EXIT DIAMETER (FT)                 | 1.6   |
| BUILDING/AREA WIDTH (FT)      | 80   | STACK EXIT GAS FLOWRATE (ACFM)           | 1,600 |
|                               |      | STACK EXIT TEMPERATURE (DEG. F)          | 130   |

### AIR POLLUTANT EMISSIONS

| POLLUTANT           | CAS NUMBER | EMISSION           | Units                             | PERCENT               | ESTIMATED OR |           | ALLOWABLE EM | ISSIONS                   |
|---------------------|------------|--------------------|-----------------------------------|-----------------------|--------------|-----------|--------------|---------------------------|
| FACTOR (SEE BELOW)* |            | EFFICIENCY EMISSIO | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)**            | (TONS/YR)    | REFERENCE |              |                           |
|                     |            |                    |                                   |                       |              |           |              |                           |
| PM                  |            | 7.60E-06           | lb/scf                            | 0                     | 2.24E-03     | na        | na na        | na                        |
|                     |            |                    |                                   |                       |              |           |              | T 11 0D 11 044 00007      |
| PM-10               |            | 7.60E-06           | lb/scf                            | 0                     | 2.24E-03     | 0.47      | 2.1          | Tier II OP, No. 011-00027 |
|                     |            |                    |                                   |                       |              |           |              |                           |
| SO2                 |            | 6.00E-07           | lb/scf                            | 0                     | 1.76E-04     | na        | na           | na                        |
|                     |            |                    |                                   |                       |              |           |              |                           |
| CO                  |            | 8.40E-05           | lb/scf                            | 0                     | 2.47E-02     | na        | na           | na                        |
|                     |            |                    |                                   |                       |              |           |              |                           |
| NOX                 |            | 1.00E-04           | lb/scf                            | 0                     | 2.94E-02     | na        | na           | na                        |
|                     |            |                    | •                                 |                       |              |           |              |                           |
| voc                 |            | 5.50E-06           | lb/scf                            | 0                     | 1.62E-03     | na        | na           | na                        |
|                     |            |                    |                                   |                       |              |           |              |                           |
| LEAD                |            | 5.00E-10           | lb/scf                            | 0                     | 1.47E-07     | na        | na           | na                        |
|                     |            | ** ************    | fuel burning                      | and particulate emics | ione         |           |              |                           |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL | BURNING | FOUIPMENT |
|-----------------|---------|-----------|

DEHYDRATION AIR DRYER # 5 A STAGE

| DEO. | LISE | DMI | ٧ |
|------|------|-----|---|

| DEQ PLANT ID CODE | DEQ PROCESS CODE | DEQ STACK ID CODE |
|-------------------|------------------|-------------------|
| DEQ BUILDING CODE | PRIMARY SCC      | SECONDARY SCC     |
| DEO SEGMENT CODE  |                  |                   |

### PART A: GENERAL INFORMATION

| STACK DESCRIPTION    | POINT                      |            |                  |
|----------------------|----------------------------|------------|------------------|
|                      |                            |            |                  |
| BUILDING DESCRIPTION | DEHYDRATION DRYER ROOM 4&5 |            |                  |
|                      |                            |            |                  |
| MANUFACTURER         | IPROCTOR                   | MODEL NONE | DATE INSTALLED 1 |

### RATED CAPACITY (CHOOSE APPROPRIATE UNITS)

| MILLION BTU/HR 10.4 | BURNER TYPE 10        |
|---------------------|-----------------------|
| 1000 LBS STEAM/HR   | % USED FOR PROCESS 10 |
| KILOWATTS           | % USED FOR SPACE HEAT |
| HORSEPOWER          |                       |

#### FUEL DATA

|                            | •            |          |                |          |
|----------------------------|--------------|----------|----------------|----------|
| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS    |
|                            |              |          |                | ,        |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           |          |
|                            |              |          |                |          |
| PERCENT SULFUR             | <0.001       | %        |                |          |
|                            |              |          |                |          |
| PERCENT ASH                | 0            | %        |                |          |
|                            |              |          |                |          |
| PERCENT NITROGEN           | 3.4          | %        |                |          |
|                            |              |          |                |          |
| PERCENT CARBON             | 72.5         | %        |                |          |
|                            |              |          |                |          |
| PERCENT HYDROGEN           | 23.8         | %        |                | <u> </u> |
|                            |              |          |                | γ        |
| PERCENT MOISTURE           | 0            | %        |                |          |
|                            |              |          |                |          |
| HEAT CONTENT               |              |          |                |          |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |          |
|                            | T            |          |                | I        |
| MAXIMUM HOURLY             | 10196.08     |          | İ              |          |
| COMBUSTION RATE (UNITS/HR) |              | SCF/HR   |                |          |
|                            |              |          |                | T        |
| NORMAL ANNUAL              |              |          |                |          |
| COMBUSTION RATE (UNITS/YR) | 89.32        | MMSCF/YR |                |          |
| *Not applicable            |              |          |                |          |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #5 STAGE A

# OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |    |
|--------------------------------------|--------------------|----|
| DEC-FEB 25                           | HOURS/DAY 2        | 24 |
| MAR-MAY 25                           | DAY/WEEK           | 7  |
| JUN-AUG 25                           | WEEKS/YEAR 36      | 65 |
| SEP-NOV 25                           |                    |    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              | ·         |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) | )            | ,         |

## VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTM X COORDINATE (KM)                    | 388                                                                                                                                                                           |
| UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                         |
| STACK TYPE (SEE NOTE BELOW)              | 2                                                                                                                                                                             |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 41                                                                                                                                                                            |
| STACK EXIT DIAMETER (FT)                 | 3.3                                                                                                                                                                           |
| STACK EXIT GAS FLOWRATE (ACFM)           | 24,600                                                                                                                                                                        |
| STACK EXIT TEMPERATURE (DEG. F)          | 160                                                                                                                                                                           |
|                                          | UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT)  STACK EXIT GAS FLOWRATE (ACFM) |

### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION     | Units  | PERCENT    | ESTIMATED OR |            | ALLOWABLE EN | IISSIONS                  |
|-----------|------------|--------------|--------|------------|--------------|------------|--------------|---------------------------|
|           |            | FACTOR       |        | CONTROL    | MEASURED     |            |              |                           |
|           |            | (SEE BELOW)* |        | EFFICIENCY | EMISSIONS    | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |              |        |            | (LBS/HR)     |            |              |                           |
|           |            |              |        |            |              | r          |              |                           |
| PM        |            | 7.60E-06     | lb/scf | 0          | 7.75E-02     | na         | na ·         | na                        |
|           |            |              |        |            |              |            |              | 17 U.O. N 044 .0007       |
| PM-10     |            | 7.60E-06     | lb/scf | 0          | 7.75E-02     | 1.78       | 7.8          | Tier II OP, No. 011-00027 |
|           |            |              |        |            | 0.405.00     |            | T            | 1                         |
| SO2       |            | 6.00E-07     | lb/scf | 0          | 6.12E-03     | na         | na           | na                        |
|           |            | 8.40E-05     | lb/scf | 0          | 8.56E-01     | na         | na           | na                        |
| co        |            | 6.40L-03     | 10/301 |            | 0.002-01     | , na       |              | 1.00                      |
| NOX       |            | 1.00E-04     | lb/scf | 0          | 1.02E+00     | na         | na           | na                        |
|           |            |              |        |            |              |            |              |                           |
| VOC       |            | 5.50E-06     | lb/scf | 0          | 5.61E-02     | na         | na           | na                        |
|           |            |              |        |            |              | ,          |              |                           |
| LEAD      |            | 5.00E-10     | lb/scf | 0          | 5.10E-06     | na         | i na         | na                        |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EQUIP | PMENT DEHYDRATI    | ON AIR DRYER #5 B STAGE |                         |
|-------------------------------|--------------------|-------------------------|-------------------------|
| DEQ USE ONLY                  |                    |                         |                         |
| DEQ PLANT ID CODE             | DEQ PROCE          | SS CODE                 | DEQ STACK ID CODE       |
| DEQ BUILDING CODE             | PRIMARY SO         | cc                      | SECONDARY SCC           |
| DEQ SEGMENT CODE              |                    |                         |                         |
| PART A: GENERAL INFORMATION   | ON                 |                         |                         |
| PROCESS CODE OR DESCRIPTION   | DEHYDRATION AIR DR | /ER # 5 B STAGE         |                         |
| STACK DESCRIPTION             | POINT              |                         |                         |
| BUILDING DESCRIPTION          | DEHYDRATION DRYER  | ROOM 4&5                |                         |
| MANUFACTURER                  | PROCTOR            | MODEL NONE              | DATE INSTALLED 1992     |
|                               |                    |                         | DATE LAST MODIFIED 1992 |
| RATED CAPACITY (CHOOSE APPR   | ROPRIATE UNITS)    |                         |                         |
| MILLION BTU/HR 3.2            |                    | BURNER TYPE             | 10                      |

% USED FOR PROCESS

% USED FOR SPACE HEAT

### FUEL DATA

KILOWATTS

HORSEPOWER

1000 LBS STEAM/HR

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | LINITO   | SECONDARY FUEL | UNITS   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------------|---------|
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRIMARY FUEL | UNITS    | SECONDART FUEL | , ONITS |
| ELECTION (SEE NOTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            | na*      | None           |         |
| FUEL CODE (SEE NOTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>     | i iiu    |                |         |
| PERCENT SULFUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001       | %        |                |         |
| T LINE LINE STATE OF THE STATE |              |          |                |         |
| PERCENT ASH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            | %        |                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |                |         |
| PERCENT NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.4          | %        |                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | %        |                |         |
| PERCENT CARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72,5         | 76       |                |         |
| PERCENT HYDROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.8         | %        |                |         |
| PERCENTITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |                |         |
| PERCENT MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            | %        |                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |                | -r      |
| HEAT CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |                |         |
| (BTU/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,020        | BTU/scf  |                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0407.05      |          |                | Τ       |
| MAXIMUM HOURLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3137.25      | SCF/HR   |                |         |
| COMBUSTION RATE (UNITS/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |          | 1              | I       |
| NORMAL ANNUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Τ΄           |          |                |         |
| COMBUSTION RATE (UNITS/YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.48        | MMSCF/YR |                |         |

\*Not applicable

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)
- FUEL CODES 01) NATURAL GAS; 02) #1 OR #2 FUEL OIL; 03) #4 FUEL OIL; 04) #5 OR #6 FUEL OIL; 05) USED OIL
  - 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
  - 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
  - 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #5 STAGE B

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           | 1                  |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

| VENTILATION AND BUILDING/AREA DATA | STACK DATA                               |        |
|------------------------------------|------------------------------------------|--------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                    | 4,498  |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388    |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784  |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | 2      |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 41     |
| BUILDING/AREA LENGTH (FT) 130      | STACK EXIT DIAMETER (FT)                 | 2.6    |
| BUILDING/AREA WIDTH (FT) 80        | STACK EXIT GAS FLOWRATE (ACFM)           | 11,000 |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | 150    |

### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION     | Units  | PERCENT    | ESTIMATED OR |            | ALLOWABLE EN | MISSIONS                  |
|-----------|------------|--------------|--------|------------|--------------|------------|--------------|---------------------------|
| 022377    | Ī          | FACTOR       |        | CONTROL    | MEASURED     |            |              |                           |
|           |            | (SEE BELOW)* |        | EFFICIENCY | EMISSIONS    | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |              |        |            | (LBS/HR)     |            |              |                           |
|           |            |              |        |            |              |            |              |                           |
| PM        |            | 7.60E-06     | lb/scf | 0          | 2.38E-02     | na         | na           | na                        |
|           |            |              |        |            |              |            |              |                           |
| PM-10     |            | 7.60E-06     | lb/scf | 0          | 2.38E-02     | 0.77       | 3.4          | Tier II OP, No. 011-00027 |
|           |            |              |        |            |              |            |              |                           |
| SO2       |            | 6.00E-07     | lb/scf | 0          | 1.88E-03     | na         | na           | na                        |
|           |            |              |        |            |              |            |              |                           |
| CO        |            | 8.40E-05     | lb/scf | 0          | 2.64E-01     | na         | na           | na                        |
|           |            |              |        |            |              |            | T            |                           |
| NOX       |            | 1.00E-04     | lb/scf | 0          | 3.14E-01     | na         | na           | na                        |
|           |            |              |        |            |              |            |              |                           |
| VOC       |            | 5.50E-06     | lb/scf | 0          | 1.73E-02     | na         | na           | na                        |
|           |            |              |        |            |              | 1          |              |                           |
| LEAD      |            | 5.00E-10     | lb/scf | 0          | 1.57E-06     | na na      | na           | na                        |

STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE NOTE:

| SECTION 2: FUEL BURNING EC | QUIPMENT DEHYD    | DRATION AIR DRYER # 5 C | STAGE |                   |      |
|----------------------------|-------------------|-------------------------|-------|-------------------|------|
| DEQ USE ONLY               |                   |                         |       |                   |      |
| DEQ PLANT ID CODE          | DEQ P             | ROCESS CODE             | DE    | EQ STACK ID CODE  |      |
| DEQ BUILDING CODE          | PRIMA             | RY SCC                  | SE    | CONDARY SCC       |      |
| DEQ SEGMENT CODE           |                   |                         |       |                   |      |
| PART A: GENERAL INFORM     | 4                 | R DRYER#5 C STAGE       |       |                   |      |
| STACK DESCRIPTION          | POINT             |                         |       |                   |      |
| BUILDING DESCRIPTION       | DEHYDRATION DE    | RYER ROOM 4&5           |       |                   |      |
| MANUFACTURER               | PROCTOR           | MODEL NONE              |       | ATE INSTALLED     | 1992 |
|                            |                   |                         | D     | ATE LAST MODIFIED | 1992 |
| RATED CAPACITY (CHOOSE A   | PPROPRIATE UNITS) |                         |       |                   |      |
| MILLION BTU/HR             | 3.3               | BURNER TYPE             | 10    |                   |      |

% USED FOR PROCESS

% USED FOR SPACE HEAT

100

### FUEL DATA

KILOWATTS

1000 LBS STEAM/HR

| PARAMETER                  | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|----------------------------|--------------|----------|----------------|-------|
| Truvinia                   |              |          |                |       |
| FUEL CODE (SEE NOTE)       | 1            | na*      | None           | L     |
|                            |              |          |                | 1     |
| PERCENT SULFUR             | <0.001       | %        |                |       |
|                            |              | %        |                |       |
| PERCENT ASH                | 0            | 76       |                |       |
| PERCENT NITROGEN           | 3.4          | %        |                |       |
|                            |              |          |                |       |
| PERCENT CARBON             | 72.5         | %        |                |       |
|                            |              |          |                |       |
| PERCENT HYDROGEN           | 23.8         | %        |                |       |
| PERCENT MOISTURE           | 0            | %        |                |       |
|                            |              |          |                |       |
| HEAT CONTENT               |              |          |                |       |
| (BTU/UNIT)                 | 1,020        | BTU/scf  |                |       |
| Feet William College V     | 3235,29      |          |                |       |
| MAXIMUM HOURLY             | 3230.29      | SCF/HR   |                |       |
| COMBUSTION RATE (UNITS/HR) |              | SOFFICE  |                |       |
| NORMAL ANNUAL              |              |          |                |       |
| COMBUSTION RATE (UNITS/YR) | 28.34        | MMSCF/YR |                |       |
| *Not applicable            |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### DEHYDRATION DRYER #5 STAGE C

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAY/WEEK 7         |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

### VENTILATION AND BUILDING/AREA DATA

| 87 | TAC: | ĸг | ۱Δ. | ГΔ |
|----|------|----|-----|----|

| VENTILATION AND BUILDING/AREA DATA | O TABLE ATTA                             |       |
|------------------------------------|------------------------------------------|-------|
| ENCLOSED (Y/N)?                    | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | 2     |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 41    |
| BUILDING/AREA LENGTH (FT) 130      | STACK EXIT DIAMETER (FT)                 | 2     |
| BUILDING/AREA WIDTH (FT) 80        | STACK EXIT GAS FLOWRATE (ACFM)           | 7,000 |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | 130   |
|                                    |                                          |       |

### AIR POLLUTANT EMISSIONS

| POLLUTANT | EMISSION | EMISSION Units         |        | ESTIMATED OR          | ALLOWABLE EMISSIONS               |            |           |                           |
|-----------|----------|------------------------|--------|-----------------------|-----------------------------------|------------|-----------|---------------------------|
|           |          | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR) | REFERENCE                 |
| L         |          |                        |        |                       |                                   |            |           |                           |
| PM        |          | 7.60E-06               | lb/scf | 0                     | 2.46E-02                          | na         | na        | na                        |
|           |          |                        |        |                       |                                   |            |           |                           |
| PM-10     |          | 7.60E-06               | lb/scf | 0                     | 2.46E-02                          | 0.77       | 3.4       | Tier II OP, No. 011-00027 |
|           |          |                        |        |                       |                                   |            | 1         |                           |
| SO2       |          | 6.00E-07               | lb/scf | 0                     | 1.94E-03                          | na         | na        | na                        |
|           |          |                        |        |                       |                                   |            | Ţ         |                           |
| CO        |          | 8.40E-05               | lb/scf | 0                     | 2.72E-01                          | na         | na        | na                        |
|           |          |                        |        |                       |                                   |            |           |                           |
| NOX       |          | 1.00E-04               | lb/scf | 0                     | 3.24E-01                          | na         | na        | na                        |
|           |          |                        |        |                       |                                   |            |           |                           |
| VOC       |          | 5.50E-06               | lb/scf | 0                     | 1.78E-02                          | na         | na        | na                        |
|           |          | 100                    |        |                       |                                   |            |           |                           |
| LEAD      |          | 5.00E-10               | lb/scf | 0                     | 1.62E-06                          | na         | na        | na                        |

STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE NOTE:

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

WET AREA AIR MAKEUP SECTION 2: FUEL BURNING EQUIPMENT DEQ USE ONLY DEQ STACK ID CODE DEQ PLANT ID CODE DEQ PROCESS CODE SECONDARY SCC DEQ BUILDING CODE PRIMARY SCC DEQ SEGMENT CODE PART A: GENERAL INFORMATION PROCESS CODE OR DESCRIPTION WET AREA AIR MAKEUP STACK DESCRIPTION VOLUME BUILDING DESCRIPTION DEHYDRATION WET AREA DATE INSTALLED 1975 HARTZELL MODEL IGMP35 MANUFACTURER DATE LAST MODIFIED 1975 RATED CAPACITY (CHOOSE APPROPRIATE UNITS) BURNER TYPE MILLION BTU/HR 3.5 % USED FOR PROCESS 1000 LBS STEAM/HR

### FUEL DATA

KILOWATTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRIMARY FUEL | UNITS    | SECONDARY FUEL  | UNITS    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------|----------|
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRIMARY FUEL | UNITS    | OLOONDAKI I OLL | Olaro    |
| FUEL CODE (SEE NOTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11           | na*      | None            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                 | 1        |
| PERCENT SULFUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.001       | %        |                 |          |
| DEBOENT AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0            | %        |                 | 1        |
| PERCENT ASH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>     |          |                 | <u> </u> |
| PERCENT NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4          | %        |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                 | 1        |
| PERCENT CARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.5         | %        |                 |          |
| PERCENT HYDROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.8         | %        |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T            | %        |                 |          |
| PERCENT MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0            | 70       |                 |          |
| HEAT CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Γ            |          |                 |          |
| (BTU/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,020        | BTU/scf  |                 |          |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 3431.37      | .        |                 |          |
| MAXIMUM HOURLY<br>COMBUSTION RATE (UNITS/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1            | SCF/HR   |                 |          |
| COMBOOTICH TO TE (ON TO THE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |                 |          |
| NORMAL ANNUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |                 |          |
| COMBUSTION RATE (UNITS/YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.06        | MMSCF/YR |                 |          |
| *Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                 |          |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;

% USED FOR SPACE HEAT

11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

### WET AREA AIR MAKEUP

## OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAYWEEK 7          |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

### VENTILATION AND BUILDING/AREA DATA

| VERTICAL TRANSPORT         |     |      |
|----------------------------|-----|------|
| ENCLOSED (Y/N)?            | N   |      |
| LIGHT TOTAL (EDOMADD B)    | NA  |      |
| HOOD TYPE (FROM APP. B)    | INA |      |
| MINIMUM FLOW (ACFM)        | NA  |      |
| PERCENT CAPTURE EFFICIENCY | NA  |      |
| BUILDING HEIGHT (FT)       |     | 16.5 |
| BUILDING/AREA LENGTH (FT)  |     | 80   |
| BUILDING/AREA WIDTH (FT)   |     | 80   |

### STACK DATA

| 4,498                 |
|-----------------------|
|                       |
| 388                   |
|                       |
| 4,784                 |
|                       |
| 2                     |
| SOURCE HEIGHT = 10 FT |
| GOORGE TIEIGHT - 1011 |
| NA                    |
| NA                    |
|                       |
| NA                    |
|                       |

# AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION     | Units  | PERCENT    | ESTIMATED OR |            | ALLOWABLE EMIS | SIONS                     |
|-----------|------------|--------------|--------|------------|--------------|------------|----------------|---------------------------|
| OLLOTAIN  |            | FACTOR       |        | CONTROL    | MEASURED     |            |                |                           |
|           |            | (SEE BELOW)* |        | EFFICIENCY | EMISSIONS    | (LBS/HR)** | (TONS/YR)      | REFERENCE                 |
|           |            |              |        |            | (LBS/HR)     |            |                |                           |
|           |            |              |        |            |              |            |                |                           |
| PM        |            | 7.60E-06     | lb/scf | 0          | 2.61E-02     | na         | na .           | na                        |
|           |            |              |        |            |              |            |                | Tier II OP, No. 011-00027 |
| PM-10     |            | 7.60E-06     | lb/scf | 00         | 2.61E-02     | 0.03       | 0.11           | Her II OP, No. 011-00027  |
|           |            |              | 0.7    | 0          | 2.06E-03     | na         | na             | na                        |
| SO2       |            | 6.00E-07     | lb/scf | U          | Z.00E-03     | Πα         | i iiu          | 774                       |
| СО        |            | 8.40E-05     | lb/scf | 0          | 2.88E-01     | na         | na             | na                        |
| CO        |            | 0.102.00     |        |            | 1            |            |                |                           |
| NOX       |            | 1.00E-04     | lb/scf | 0          | 3.43E-01     | na         | na             | na                        |
|           |            |              |        |            |              |            |                |                           |
| VOC       |            | 5.50E-06     | lb/scf | 0          | 1.89E-02     | na         | na             | na                        |
|           |            |              |        |            |              |            | 1              |                           |
| LEAD      |            | 5.00E-10     | lb/scf | 0          | 1.72E-06     | na         | na             | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FLIFE | BURNING FOURME | TM= |
|------------------|----------------|-----|

SOUTH DRYER ROOM 4&5 AIR MAKEUP

| DEQ | USE | ONLY |
|-----|-----|------|
|-----|-----|------|

| DEQ PLANT ID CODE           | DEQ PRO          | CESS COD    | E        |              | DEQ STAC  | KID CODE |      |
|-----------------------------|------------------|-------------|----------|--------------|-----------|----------|------|
|                             |                  |             |          |              |           |          |      |
| DEQ BUILDING CODE           | PRIMARY          | SCC         |          | ]            | SECONDA   | RYSCC    |      |
|                             |                  |             |          | <del>_</del> |           |          |      |
| DEQ SEGMENT CODE            | ]                |             |          |              |           |          |      |
|                             | •                |             |          |              |           |          |      |
|                             |                  |             |          |              |           |          |      |
| PART A: GENERAL INFORMAT    | ION              |             |          |              |           |          |      |
|                             |                  |             |          |              |           |          |      |
| PROCESS CODE OR DESCRIPTION | SOUTH DRYER ROO  | M 4&5 AIR I | MAKEUP   |              |           |          |      |
|                             |                  |             |          |              |           |          |      |
| STACK DESCRIPTION           | VOLUME           |             |          |              |           |          |      |
|                             |                  |             |          |              |           |          |      |
| BUILDING DESCRIPTION        | DEHYDRATION DRYS | ER ROOM 4   | . & 5    |              |           |          |      |
|                             |                  |             | 1        | 7            | DATE INOT | ALLED    | 1989 |
| MANUFACTURER                | HARTZELL         | MODEL       | IGMP50   | J            | DATE INST | ALLED    | 1909 |
|                             |                  |             |          |              | DATELACT  | MODIFIED | 1989 |
|                             |                  |             |          |              | DATELASI  | MODIFIED | 1303 |
| TATES CARACITY (OLICOSE ADD | DODDIATE LIMITO  |             |          |              |           |          |      |
| RATED CAPACITY (CHOOSE APP  | ROPRIATE UNITS)  |             |          |              |           |          |      |
| MILLION BTU/HR 5            | 7                | BURNER      | TVDE     | 9            | 1         |          |      |
| MILLION BTU/HR 5            | J                | DOMEN       | 11111    |              | 1         |          |      |
| 1000 LBS STEAM/HR           | 7                |             | % USED F | OR PROCE     | SS        | 100      |      |
| 1000 LBS STEAM/FIX          | J                |             |          |              |           |          |      |
| KILOWATTS                   | 1                |             | % USED F | OR SPACE     | HEAT      |          |      |
| MLOWATTO                    | j                |             |          |              |           |          |      |

### FUEL DATA

HORSEPOWER

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRIMARY FUEL | UNITS    | SECONDARY FUEL | UNITS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1        |                |       |
| FUEL CODE (SEE NOTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            | na*      | None           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |       |
| PERCENT SULFUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.001       | %        |                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |       |
| PERCENT ASH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0            | %        |                |       |
| DEPOSIT NUTBOOKN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4          | %        |                |       |
| PERCENT NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4          | 70       |                |       |
| PERCENT CARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.5         | %        |                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |       |
| PERCENT HYDROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23,8         | %        |                |       |
| PERCENT MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0            | %        |                |       |
| T CITY OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STAT |              |          |                |       |
| HEAT CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |                |       |
| (BTU/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,020        | BTU/scf  |                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                | 1     |
| MAXIMUM HOURLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4901.96      | 205415   |                |       |
| COMBUSTION RATE (UNITS/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | SCF/HR   |                |       |
| NORMAL ANNUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |                |       |
| COMBUSTION RATE (UNITS/YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.94        | MMSCF/YR |                |       |
| *Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

## SOUTH DRYER ROOM 4&5 AIR MAKEUP

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |
|--------------------------------------|--------------------|
| DEC-FEB 25                           | HOURS/DAY 24       |
| MAR-MAY 25                           | DAY/WEEK 7         |
| JUN-AUG 25                           | WEEKS/YEAR 365     |
| SEP-NOV 25                           |                    |

### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

| VENTILATION AND BUILDING/AREA DATA | STACK DATA                               |                       |
|------------------------------------|------------------------------------------|-----------------------|
| ENCLOSED (Y/N)? N                  | GROUND ELEVATION (FT)                    | 4,498                 |
| HOOD TYPE (FROM APP. B) NA         | UTM X COORDINATE (KM)                    | 388                   |
| MINIMUM FLOW (ACFM) NA             | UTM Y COORDINATE (KM)                    | 4,784                 |
| PERCENT CAPTURE EFFICIENCY NA      | STACK TYPE (SEE NOTE BELOW)              | NA                    |
| BUILDING HEIGHT (FT) 16.5          | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | SOURCE HEIGHT = 10 FT |
| BUILDING/AREA LENGTH (FT) 130      | STACK EXIT DIAMETER (FT)                 | NA                    |
| BUILDING/AREA WIDTH (FT) 80        | STACK EXIT GAS FLOWRATE (ACFM)           | NA                    |
|                                    | STACK EXIT TEMPERATURE (DEG. F)          | NA                    |

## AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | IISSIONS                  |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| OLLO MILL |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |                        |        |                       | 1                                 |            |              |                           |
| PM        |            | 7.60E-06               | lb/scf | 0                     | 3.73E-02                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| PM-10     |            | 7.60E-06               | lb/scf | 0                     | 3.73E-02                          | 0.04       | 0.16         | Tier II OP, No. 011-00027 |
|           |            |                        |        |                       |                                   |            |              |                           |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 2.94E-03                          | na         | na           | na na                     |
|           |            |                        |        |                       |                                   |            |              | •                         |
| co        |            | 8.40E-05               | lb/scf | 0                     | 4.12E-01                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 4.90E-01                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| voc       |            | 5.50E-06               | lb/scf | 0                     | 2.70E-02                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   |            |              |                           |
| LEAD      |            | 5.00E-10               | lb/scf | 0                     | 2.45E-06                          | na         | na           | na                        |

STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE NOTE:

SECTION 2: FUEL BURNING EQUIPMENT SOUTH DRYER ROOM 4&5 ROOF AIR MAKEUP

| DEQ USE ONLY               |                  |            |                |           |            |      |
|----------------------------|------------------|------------|----------------|-----------|------------|------|
| DEQ PLANT ID CODE          | DEQ PRO          | OCESS CODE |                | DEQ STAC  | K ID CODE  |      |
| DEQ BUILDING CODE          | PRIMARY          | / SCC      |                | SECONDA   | RY SCC     |      |
| DEQ SEGMENT CODE           | ·<br>]           |            |                |           |            |      |
| PART A: GENERAL INFORMAT   |                  |            |                |           |            |      |
| PROCESS CODE OR DESCRIPTI  | SOUTH DRYER ROO  | M 4&5 ROOF | AIR MAKEUP     |           |            |      |
| STACK DESCRIPTION          | VOLUME           |            |                |           |            |      |
| BUILDING DESCRIPTION       | DEHYDRATION DRY  | ER ROOM 4  | <b>3</b> 5     |           |            |      |
| MANUFACTURER               | HARTZELL         | MODEL      | IGMP50         | DATE INST | TALLED     | 1991 |
|                            |                  |            |                | DATE LAS  | T MODIFIED | 1991 |
| RATED CAPACITY (CHOOSE APP | PROPRIATE UNITS) |            |                |           |            |      |
| MILLION BTU/HR             |                  | BURNER     | YPE            | 9         |            |      |
| 1000 LBS STEAM/HR          | ]                |            | % USED FOR PRO | CESS      | 100        |      |
| KILOWATTS                  |                  |            | % USED FOR SPA | CE HEAT   |            |      |

### FUEL DATA

HORSEPOWER

| PARAMETER                  | PRIMARY FUEL   | UNITS    | SECONDARY FUEL | UNITS  |
|----------------------------|----------------|----------|----------------|--------|
| FARAMETER                  | I TAMAKI I OLL |          | 1              | 1 12.7 |
| FUEL CODE (SEE NOTE)       | 1              | na*      | None           |        |
|                            |                |          |                |        |
| PERCENT SULFUR             | <0.001         | %        |                |        |
|                            |                |          |                |        |
| PERCENT ASH                | 0              | %        |                |        |
|                            |                | %        |                |        |
| PERCENT NITROGEN           | 3.4            | 76       |                |        |
| PERCENT CARBON             | 72.5           | 7 %      |                |        |
| I ERGENT GARBOR            |                |          |                |        |
| PERCENT HYDROGEN           | 23.8           | %        |                |        |
|                            |                |          |                |        |
| PERCENT MOISTURE           | 0              | %        |                |        |
|                            |                |          |                | 1      |
| HEAT CONTENT               | 1,020          | BTU/scf  |                |        |
| (BTU/UNIT)                 | 1,020          | DTO/SCI  |                |        |
| MAXIMUM HOURLY             | 4901.96        |          |                |        |
| COMBUSTION RATE (UNITS/HR) |                | SCF/HR   |                |        |
|                            |                |          |                |        |
| NORMAL ANNUAL              |                |          |                |        |
| COMBUSTION RATE (UNITS/YR) | 42.94          | MMSCF/YR |                |        |
| *Not applicable            |                |          |                | •      |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

# SOUTH DRYER ROOM 4&5 ROOF AIR MAKEUP

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |    |
|--------------------------------------|--------------------|----|
| DEC-FEB 25                           | HOURS/DAY          | 24 |
| MAR-MAY 25                           | DAYWEEK            | 7  |
| JUN-AUG 25                           | WEEKS/YEAR 3       | 65 |
| SEP-NOV 25                           |                    |    |

#### POLLUTION CONTROL EQUIPMENT

| POLLO HON CONTROL EQUIPMENT   |              |           |
|-------------------------------|--------------|-----------|
| PARAMETER TYPE                | PRIMARY None | SECONDARY |
| TYPE CODE (FROM APP. A)       |              |           |
| MANUFACTURER                  |              |           |
| MODEL NUMBER                  |              |           |
| PRESSURE DROP (IN. OF WATER)  |              |           |
| WET SCRUBBER FLOW (GPM)       |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM | )            |           |

### VENTILATION AND BUILDING/AREA DATA

#### STACK DATA

| GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTM X COORDINATE (KM)                    | 368                                                                                                                                                                           |
| UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                         |
| STACK TYPE (SEE NOTE BELOW)              | NA                                                                                                                                                                            |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | SOURCE HEIGHT = 10 FT                                                                                                                                                         |
| STACK EXIT DIAMETER (FT)                 | NA                                                                                                                                                                            |
| STACK EXIT GAS FLOWRATE (ACFM)           | NA                                                                                                                                                                            |
| STACK EXIT TEMPERATURE (DEG. F)          | NA                                                                                                                                                                            |
|                                          | UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT)  STACK EXIT GAS FLOWRATE (ACFM) |

### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|------------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
| 022017111 |            | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
|           |            |                        |        |                       | 0.705.00                          | T ==       | l ==         | Inc                       |
| PM        |            | 7.60E-06               | lb/scf | 0                     | 3.73E-02                          | na         | na           | na                        |
| PM-10     |            | 7.60E-06               | lb/scf | 0                     | 3.73E-02                          | 0.04       | 0.16         | Tier II OP, No. 011-00027 |
|           |            |                        |        |                       | 2045.00                           | 1          |              |                           |
| SO2       |            | 6.00E-07               | lb/scf | 0                     | 2.94E-03                          | na         | na           | na                        |
| со        |            | 8.40E-05               | lb/scf | 0                     | 4.12E-01                          | na         | na           | na                        |
| NOX       |            | 1.00E-04               | lb/scf | 0                     | 4.90E-01                          | na         | na           | na                        |
|           |            |                        |        |                       |                                   | Т          |              |                           |
| VOC       |            | 5.50E-06               | lb/scf | 0                     | 2.70E-02                          | na         | na na        | na                        |
| LEAD      |            | 5.00E-10               | lb/scf | 0                     | 2.45E-06                          | na         | na           | na                        |

<sup>\*</sup>EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: | FLIFI | RURNING | FOL | JIPMENT |
|------------|-------|---------|-----|---------|

INSPECTION ROOM ROOF AIR MAKEUP

| DEO | USE | ONI | v |
|-----|-----|-----|---|

| 524 002 07121              |                    |            |           |          |           |          |      |
|----------------------------|--------------------|------------|-----------|----------|-----------|----------|------|
| DEQ PLANT ID CODE          | DEQ PRO            | CESS COD   | E         |          | DEQ STAC  | KID CODE | -    |
| DEQ BUILDING CODE          | PRIMARY            | 'scc       |           |          | SECONDA   | RY SCC   |      |
| DEQ SEGMENT CODE           |                    |            |           |          |           |          |      |
| PART A: GENERAL INFORMA    | TION               |            |           |          |           |          |      |
| PROCESS CODE OR DESCRIPT   | IC INSPECTION ROOM | ROOF AIR I | MAKEUP    |          |           |          |      |
| STACK DESCRIPTION          | VOLUME             |            |           |          |           |          |      |
| BUILDING DESCRIPTION       | DEHYDRATION INSP   | ECTION RO  | ООМ       |          |           |          |      |
| MANUFACTURER               | HARTZELL           | MODEL      | IGMP35    |          | DATE INST | ALLED    | 1985 |
|                            |                    |            |           |          | DATE LAST | MODIFIED | 1985 |
| RATED CAPACITY (CHOOSE API | PROPRIATE UNITS)   |            |           | •        |           |          |      |
| MILLION BTU/HR 3.5         | 5                  | BURNER     | TYPE      | 9        |           |          |      |
| 1000 LBS STEAM/HR          | ]                  |            | % USED FO | OR PROCE | SS        | 100      |      |
| KILOWATTS                  | ]                  |            | % USED FO | OR SPACE | HEAT      |          |      |

### FUEL DATA

HORSEPOWER

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRIMARY FUEL | UNITS    | SECONDARY FUEL   | UNITS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|------------------|-------|
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRIMARTICE   | 1 011110 | 0200110711111000 |       |
| FUEL CODE (SEE NOTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            | na*      | None             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          | ·                |       |
| PERCENT SULFUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.001       | %        |                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                  |       |
| PERCENT ASH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0            | %        |                  |       |
| PERCENT NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,4          | %        |                  |       |
| PERCENT NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,4          | 79       |                  |       |
| PERCENT CARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.5         | %        |                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                  | 1     |
| PERCENT HYDROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.8         | %        |                  |       |
| PERCENT MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0            | %        |                  |       |
| T LINGS OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | L            |          |                  |       |
| HEAT CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |                  |       |
| (BTU/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,020        | BTU/scf  |                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                  |       |
| MAXIMUM HOURLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3431.37      |          |                  |       |
| COMBUSTION RATE (UNITS/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | SCF/HR   |                  |       |
| NORMAL ANNUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |                  |       |
| COMBUSTION RATE (UNITS/YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.06        | MMSCF/YR |                  |       |
| *Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                  |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

## INSPECTION ROOM ROOF AIR MAKEUP

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAYWEEK            | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

## VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| REA DATA | STACKDATA                                |                                                                                                                                                                                                                                                        |
|----------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N        | GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                                                                                                  |
| NA       | UTM X COORDINATE (KM)                    | 388                                                                                                                                                                                                                                                    |
| NA       | UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                                                                                                  |
| CYNA     | STACK TYPE (SEE NOTE BELOW)              | NA                                                                                                                                                                                                                                                     |
| 16.5     | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | SOURCE HEIGHT = 10 FT                                                                                                                                                                                                                                  |
| 80       | STACK EXIT DIAMETER (FT)                 | NA                                                                                                                                                                                                                                                     |
| 130      | STACK EXIT GAS FLOWRATE (ACFM)           | NA                                                                                                                                                                                                                                                     |
|          | STACK EXIT TEMPERATURE (DEG. F)          | NA                                                                                                                                                                                                                                                     |
|          | NA                                       | N   GROUND ELEVATION (FT)     NA   UTM X COORDINATE (KM)     NA   UTM Y COORDINATE (KM)     STACK TYPE (SEE NOTE BELOW)     16.5   STACK EXIT HEIGHT FROM GROUND LEVEL (FT)     80   STACK EXIT DIAMETER (FT)     130   STACK EXIT GAS FLOWRATE (ACFM) |

# AIR POLLUTANT EMISSIONS

| POLLUTANT CAS NUMBER |  | R EMISSION             |        | PERCENT               | ESTIMATED OR                      | ALLOWABLE EMISSIONS |           |                           |
|----------------------|--|------------------------|--------|-----------------------|-----------------------------------|---------------------|-----------|---------------------------|
|                      |  | FACTOR<br>(SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)**          | (TONS/YR) | REFERENCE                 |
|                      |  | 7.005.00               | lb/scf | 0                     | 2.61E-02                          | l na                | na        | na                        |
| PM                   |  | 7.60E-06               | ID/SCI |                       | 2.01E-02                          | ria                 | IIa       | IIa                       |
| PM-10                |  | 7.60E-06               | lb/scf | 0                     | 2.61E-02                          | 0.03                | 0.11      | Tier II OP, No. 011-00027 |
|                      |  |                        |        |                       | 1 0005 00                         |                     |           |                           |
| SO2                  |  | 6.00E-07               | lb/scf | 0                     | 2.06E-03                          | na                  | na        | na                        |
| СО                   |  | 8.40E-05               | lb/scf | 0                     | 2.88E-01                          | na                  | na        | na                        |
| NOX                  |  | 1.00E-04               | lb/scf | 0                     | 3.43E-01                          | na                  | na        | na                        |
|                      |  |                        |        |                       |                                   |                     |           |                           |
| voc                  |  | 5.50E-06               | lb/scf | 0                     | 1.89E-02                          | na                  | na        | na                        |
| LEAD                 |  | 5.00E-10               | lb/scf | 0                     | 1.72E-06                          | na                  | na        | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| SECTION 2: FUEL BURNING EQUIPME | N |
|---------------------------------|---|
|                                 |   |

### DEHYDRATION RESEARCH DRYER

| 000    | HOE | ONII | v   |
|--------|-----|------|-----|
| 1 )H(J | USE | ONI  | _ Y |

| DEG OOL ONE!              |                   |            |                |            |          |      |
|---------------------------|-------------------|------------|----------------|------------|----------|------|
| DEQ PLANT ID CODE         | DEQ PRO           | DCESS CODE |                | DEQ STACK  | (ID CODE |      |
| DEQ BUILDING CODE         | PRIMARY           | SCC        |                | SECONDAR   | RY SCC   |      |
| DEQ SEGMENT CODE          |                   |            |                |            |          |      |
| PART A: GENERAL INFORMAT  | TION              |            |                |            |          |      |
| PROCESS CODE OR DESCRIPT  | DEHYDRATION RES   | EARCH DRYE | ER             |            |          |      |
| STACK DESCRIPTION         | POINT             |            |                |            |          |      |
| BUILDING DESCRIPTION      | DEHYDRATION R & I | D ROOM     |                |            |          |      |
| MANUFACTURER              | CARRIER           | MODEL      | NONE           | DATE INSTA | ALLED    | 1992 |
|                           |                   |            |                | DATE LAST  | MODIFIED | 1992 |
| RATED CAPACITY (CHOOSE AP | PROPRIATE UNITS)  |            |                |            |          |      |
| MILLION BTU/HR 0.8        | В                 | BURNER T   | YPE            | 9          |          |      |
| 1000 LBS STEAM/HR         | ]                 |            | % USED FOR PRO | OCESS      | 100      |      |
| KILOWATTS                 | ٦                 |            | % USED FOR SPA | ACE HEAT   |          |      |

### FUEL DATA

HORSEPOWER

| PARAMETER                                 | PRIMARY FUEL | UNITS       | SECONDARY FUEL | UNITS |
|-------------------------------------------|--------------|-------------|----------------|-------|
|                                           |              | 1           |                |       |
| FUEL CODE (SEE NOTE)                      | 1            | na*         | None           |       |
|                                           |              |             |                |       |
| PERCENT SULFUR                            | <0.001       | %           |                |       |
|                                           |              |             |                | 1     |
| PERCENT ASH                               | 0            | %           |                |       |
| DEDOCAL AUTOCOEN                          | 3.4          | %           |                |       |
| PERCENT NITROGEN                          | 3.4          |             |                |       |
| PERCENT CARBON                            | 72.5         | %           |                |       |
|                                           |              |             |                |       |
| PERCENT HYDROGEN                          | 23.8         | %           | <u> </u>       |       |
|                                           |              | 1 0/        |                |       |
| PERCENT MOISTURE                          | 0            | %           |                |       |
| HEAT CONTENT                              |              |             |                |       |
| (BTU/UNIT)                                | 1,020        | BTU/scf     |                |       |
| (5:5:5:1)                                 |              |             |                |       |
| MAXIMUM HOURLY                            | 862.75       |             |                |       |
| COMBUSTION RATE (UNITS/HR)                |              | SCF/HR      |                | l     |
|                                           |              | 1           |                | 1     |
| NORMAL ANNUAL                             | 7.56         | MMSCF/YR    |                |       |
| COMBUSTION RATE (UNITS/YR) *Not Available | 7.56         | WW/OCI /TIX |                |       |

NOTE: BURNER TYPE - 01) SPREAD STOKER; 02) CHAIN OR TRAVELING GRATE; 03) HAND FIRED; 04) CYCLONE FURNACE;

- 05) WET BOTTOM (PULVERIZED COAL); 06) DRY BOTTOM (PULVERIZED COAL);
- 07) UNDERFEED STOKERS; 08) TANGENTIALLY FIRED; 09) HORIZONTALLY FIRED; 10) AXIALLY FIRED;
- 11) OTHER (SPECIFY)

- 06) WOOD CHIPS; 07) WOOD BARK; 08) WOOD SHAVINGS; 09) SANDER DUST;
- 10) SUBBITUMINOUS COAL; 11) BITUMINOUS COAL; 12) ANTHRACITE COAL; 13) LIGNITE COAL
- 14) PROPANE; 15) OTHER (SPECIFY)

## DEHYDRATION RESEARCH DRYER

### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |  |
|--------------------------------------|--------------------|-----|--|
| DEC-FEB 25                           | HOURS/DAY          | 24  |  |
| MAR-MAY 25                           | DAY/WEEK           | 7   |  |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |  |
| SEP-NOV 25                           |                    |     |  |

# POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY | None |      | SECONDARY |      |
|--------------------------------|---------|------|------|-----------|------|
| TYPE CODE (FROM APP. A)        |         |      |      |           |      |
| MANUFACTURER                   |         |      |      |           |      |
| MODEL NUMBER                   |         |      | <br> |           | <br> |
| PRESSURE DROP (IN. OF WATER)   |         |      | <br> |           |      |
| WET SCRUBBER FLOW (GPM)        |         |      |      |           |      |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |         |      | <br> |           |      |

#### VENTILATION AND BUILDING/AREA DATA

### STACK DATA

| VENTILATION AND BOILDINGSANDARD SANT |                                          |       |
|--------------------------------------|------------------------------------------|-------|
| ENCLOSED (Y/N)?                      | GROUND ELEVATION (FT)                    | 4,498 |
| HOOD TYPE (FROM APP. B) NA           | UTM X COORDINATE (KM)                    | 388   |
| MINIMUM FLOW (ACFM) NA               | UTM Y COORDINATE (KM)                    | 4,784 |
| PERCENT CAPTURE EFFICIENCY NA        | STACK TYPE (SEE NOTE BELOW)              | 3     |
| BUILDING HEIGHT (FT) 16.6            | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 24    |
| BUILDING/AREA LENGTH (FT) 80         | STACK EXIT DIAMETER (FT)                 | 0.5   |
| BUILDING/AREA WIDTH (FT) 50          | STACK EXIT GAS FLOWRATE (ACFM)           | 70    |
|                                      | STACK EXIT TEMPERATURE (DEG. F)          | 95    |
|                                      |                                          |       |

### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION            | Units  | PERCENT               | ESTIMATED OR                      |            | ALLOWABLE EM | ISSIONS                   |
|-----------|------------|---------------------|--------|-----------------------|-----------------------------------|------------|--------------|---------------------------|
|           |            | FACTOR (SEE BELOW)* |        | CONTROL<br>EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)    | REFERENCE                 |
| PM        |            | 7.60E-06            | lb/scf | 0                     | 6.56E-03                          | na         | na           | na                        |
|           |            |                     |        |                       | 2.50= 00                          | 0.40       |              | Transition No. 044 00007  |
| PM-10     |            | 7.60E-06            | lb/scf | 0                     | 6.56E-03                          | 0.18       | 0.8          | Tier II OP, No. 011-00027 |
| SO2       |            | 6.00E-07            | lb/scf | 0                     | 5.18E-04                          | na         | na           | na .                      |
| со        |            | 8.40E-05            | lb/scf | 0                     | 7.25E-02                          | na         | na           | na                        |
| NOX       |            | 1.00E-04            | lb/scf | 0                     | 8.63E-02                          | na         | na           | na                        |
|           |            |                     |        |                       | 4.755.00                          |            |              |                           |
| VOC       |            | 5.50E-06            | lb/scf | 0                     | 4.75E-03                          | na         | na           | na                        |
| LEAD      |            | 5.00E-10            | lb/scf | 0                     | 4.31E-07                          | na         | na           | na                        |

\*EF for NG from AP-42, Table 1.4-1,2, 1998. \*\* Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| DEQ USE ONLY       |                         |                           |                          |                  |                    |      |
|--------------------|-------------------------|---------------------------|--------------------------|------------------|--------------------|------|
| DEQ PLANT ID CODE  |                         | DEQ PROCESS CO            | DE                       | DEQ STACK ID COI | DE                 |      |
| DEQ BUILDING CODE  |                         | PRIMARY SCC               |                          | SECONDARY SCC    |                    |      |
| DEQ SEGMENT CODE   |                         |                           |                          |                  |                    |      |
| PART A: GENERAL    | INFORMATION             |                           |                          |                  |                    |      |
| PROCESS CODE OR    | DESCRIPTIC STARCH DR    | YER                       |                          |                  |                    |      |
| STACK DESCRIPTION  | POINT                   |                           |                          |                  |                    | -    |
| BUILDING DESCRIPTI | ON STARCH PL            | ANT                       |                          |                  |                    |      |
| MANUFACTURER       | MAXON                   |                           | MODEL                    | 445              | DATE INSTALLED     | 1961 |
|                    |                         |                           |                          |                  | DATE LAST MODIFIED | 1961 |
| PROCESSING DATA    |                         |                           |                          |                  |                    |      |
| PROCESS STREAM     | MATERIAL<br>DESCRIPTION | MAXIMUM<br>HOURLY<br>RATE | ACTUAL<br>HOURLY<br>RATE | UNITS            |                    |      |
|                    | IDOTATOES I             | 1,135.00                  | 1,135.00                 | LB/HR            |                    |      |
| INPUT              | POTATOES                | 1,133.00                  | 1,100.00                 |                  |                    |      |
| PRODUCT OUTPUT     | POTATOES                | 1,134.67                  | 1,134.67                 | LB/HR            |                    |      |
| WASTE OUTPUT       | PARTICULATE             | 0.33                      | 0.33                     | LB/HR            |                    |      |
| RECYCLE            | NONE                    |                           |                          |                  |                    |      |
|                    |                         |                           |                          |                  |                    |      |

# POTENTIAL HAPS IN PROCESS STREAM(S)

| HAP DESCRIPTION | HAP CAS<br>NUMBER | FRACTION IN INPUT FRACTION IN PRODUC FRACTION IN WARRANTETION IN RECYCLE STREAM BY WEIGHT STREAM BY WEIGHT STREAM BY WEIGHT |
|-----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                 | NOMBER            |                                                                                                                             |
| NONE            |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 |                   |                                                                                                                             |
|                 | 1                 |                                                                                                                             |

#### STARCH DRYER SECTION 3, PROCESS AND MANUFACTURING - PART B OPERATING DATA PERCENT FUEL CONSUMPTION PER QUARTER OPERATING SCHEDULE 24 25 HOURS/DAY DEC-FEB DAYAVEEK MAR-MAY 25 WEEKS/YEAR 365 JUN-AUG 25 25 SEP-NOV POLLUTION CONTROL EQUIPMENT SECONDARY PRIMARY None PARAMETER TYPE TYPE CODE (FROM APP. A) MANUFACTURER MODEL NUMBER PRESSURE DROP (IN. OF WATER) WET SCRUBBER FLOW (GPM) BAGHOUSE AIR/CLOTH RATIO (FPM) STACK DATA VENTILATION AND BUILDING/AREA DATA 4,498 GROUND ELEVATION (FT) ENCLOSED (Y/N)? 388 UTM X COORDINATE (KM) NA HOOD TYPE (FROM APP. B) UTM Y COORDINATE (KM) 4,784 MINIMUM FLOW (ACFM) NA STACK TYPE (SEE NOTE BELOW) PERCENT CAPTURE EFFICIENCY NA STACK EXIT HEIGHT FROM GROUND LEVEL (FT) 28 BUILDING HEIGHT (FT) 16.5 2 100 STACK EXIT DIAMETER (FT) BUILDING/AREA LENGTH (FT) STACK EXIT GAS FLOWRATE (ACFM) 5,600 50 BUILDING/AREA WIDTH (FT) 92 STACK EXIT TEMPERATURE (DEG. F) AIR POLLUTANT EMISSIONS ALLOWABLE EMISSIONS PERCENT ESTIMATED OR EMISSION Units POLLUTANT CAS NUMBER CONTROL MEASURED FACTOR REFERENCE EFFICIENCY **EMISSIONS** (LBS/HR)\*\* (TONS/YR) (SEE BELOW)\* (LBS/HR) NA lb/lb 0 3.35E-01 2.95E-04 PM Tier II OP, No. 011-00027 3.35E-01 0.37 1.6 2.95E-04 lb/lb 0 PM-10 NA SO2 NΑ CO

NOX VOC NA

NA

STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE NOTE:

LEAD \*EF for NG from AP-42, Table 9.9.7-1, 1986. \*\* Summation of fuel burning and particulate emissions.

## SCRATCH MASH DRYER

| DEQ USE ONLY       |             |                  |                  |          |                   |            |          |      |
|--------------------|-------------|------------------|------------------|----------|-------------------|------------|----------|------|
| DEQ PLANT ID CODE  |             |                  | DEQ PROCESS CODE |          | DEQ STACK ID CODE |            |          |      |
| DEQ BUILDING CODE  |             |                  | PRIMARY SCC      |          | SECONDARY SCC     |            |          |      |
| DEQ SEGMENT CODE   |             |                  |                  |          |                   |            |          |      |
| PART A: GENERAL    | INFORMATIO  | ON               |                  |          |                   |            |          |      |
| PROCESS CODE OR    | DESCRIPTIC  | SCRATCH MASH DRY | /ER              |          |                   | `          |          |      |
| STACK DESCRIPTION  |             | POINT            |                  |          |                   |            |          |      |
| BUILDING DESCRIPTI | ON          | PROCESSING PLANT | REBLEND ROOM     |          |                   |            |          |      |
| MANUFACTURER       |             | MAXON            |                  | MODEL    | 500               | DATE INSTA | ALLED    | 1997 |
|                    |             |                  |                  |          |                   | DATE LAST  | MODIFIED | 1997 |
| PROCESSING DATA    |             |                  |                  |          |                   |            |          |      |
| PROCESS STREAM     | MATERIAL    |                  | MAXIMUM          | ACTUAL   | UNITS             |            |          |      |
|                    | DESCRIPTI   | ION              | HOURLY           | HOURLY   |                   |            |          |      |
|                    |             |                  | RATE             | RATE     | <u> </u>          |            |          |      |
|                    |             |                  | 1,000,00         | 1,800.00 | LB/HR             | ٦          |          |      |
| INPUT              | POTATOES    | S                | 1,800.00         | 1,800.00 | LD/RK             |            |          |      |
| PRODUCT OUTPUT     | POTATOES    |                  | 1,797.48         | 1,797.48 | LB/HR             |            |          |      |
| WASTE OUTPUT       | PARTICULA   | ATE              | 2.52             | 2.52     | LB/HR             |            |          |      |
| RECYCLE            | NONE        |                  |                  |          |                   |            |          |      |
|                    | <del></del> |                  |                  |          |                   |            |          |      |

| HAP DESCRIPTION | HAP CAS | FRACTION IN INPUT FRACTION IN PRODUC FRACTION IN WARRANCTION IN RECYCLE |  |  |  |  |  |
|-----------------|---------|-------------------------------------------------------------------------|--|--|--|--|--|
|                 | NUMBER  | STREAM BY WEIGHT STREAM BY WEIGHT STREAM BY WEIGHT                      |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
| NONE            |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         | · · · · · · · · · · · · · · · · · · ·                                   |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |
|                 |         |                                                                         |  |  |  |  |  |

## SECTION 3, PROCESS AND MANUFACTURING - PART B

SCRATCH MASH DRYERS

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |  |
|--------------------------------------|--------------------|-----|--|
| DEC-FEB 25                           | HOURS/DAY          | 24  |  |
| MAR-MAY 25                           | DAYWEEK            | 7   |  |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |  |
| SEP-NOV 25                           |                    |     |  |
|                                      |                    |     |  |

#### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY None | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

#### VENTILATION AND BUILDING/AREA DATA

| C. | <b>FAC</b> | V F | LΔ | ΓΔ |
|----|------------|-----|----|----|
|    |            |     |    |    |

| ENCLOSED (Y/N)? N             | GROUND ELEVATION (FT)                    | 4,498  |
|-------------------------------|------------------------------------------|--------|
| HOOD TYPE (FROM APP. B) NA    | UTM X COORDINATE (KM)                    | 388    |
| MINIMUM FLOW (ACFM) NA        | UTM Y COORDINATE (KM)                    | 4,784  |
| PERCENT CAPTURE EFFICIENCY NA | STACK TYPE (SEE NOTE BELOW)              | 2      |
| BUILDING HEIGHT (FT) 16.5     | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 45     |
| BUILDING/AREA LENGTH (FT) 90  | STACK EXIT DIAMETER (FT)                 | 2.95   |
| BUILDING/AREA WIDTH (FT) 60   | STACK EXIT GAS FLOWRATE (ACFM)           | 22,700 |
|                               | STACK EXIT TEMPERATURE (DEG. F)          | 92     |

## AIR POLLUTANT EMISSIONS

| POLLUTANT           | CAS NUMBER | EMISSION       | Units       | PERCENT               | ESTIMATED OR   |                                       | ALLOWABLE EM | ISSIONS                   |
|---------------------|------------|----------------|-------------|-----------------------|----------------|---------------------------------------|--------------|---------------------------|
|                     |            | FACTOR         |             | CONTROL               | MEASURED       |                                       |              |                           |
|                     |            | (SEE BELOW)*   |             | EFFICIENCY            | EMISSIONS      | (LBS/HR)**                            | (TONS/YR)    | REFERENCE                 |
|                     |            |                |             | İ                     | (LBS/HR)       |                                       |              |                           |
|                     |            |                |             |                       | - <del> </del> | ·                                     |              |                           |
| PM                  |            | 1.40E-03       | lb/lb       | 0                     | 2.52E+00       | NA                                    |              |                           |
|                     |            |                |             |                       |                |                                       |              |                           |
| PM-10               |            | 1.40E-03       | b/lb        | 0                     | 2.52E+00       | 2.56                                  | 11.20        | Tier II OP, No. 011-00027 |
|                     |            |                |             |                       |                | ,                                     |              |                           |
| SO2                 |            | NA             |             | J                     |                |                                       |              |                           |
|                     |            |                |             |                       |                | · · · · · · · · · · · · · · · · · · · | T            |                           |
| CO                  |            | NA NA          |             |                       |                |                                       |              |                           |
|                     |            |                |             | ····                  |                |                                       |              |                           |
| NOX                 |            | NA NA          |             |                       |                |                                       |              |                           |
|                     |            |                |             |                       |                |                                       |              |                           |
| VOC                 |            | NA NA          |             |                       |                |                                       |              |                           |
|                     |            |                |             |                       |                |                                       |              |                           |
| LEAD                |            | NA NA          |             |                       |                | 1                                     |              |                           |
| ter from Mana Bolos | 200        | ** Summation o | f fuel humi | ng and particulate er | nissions.      |                                       |              |                           |

\*EF from Mass Balance

Summation of fuel burning and particulate emissions.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

#### PROCESS PEELER EXHAUST

| DEQ USE ONLY                                        |                                   |       |                   |                    |      |
|-----------------------------------------------------|-----------------------------------|-------|-------------------|--------------------|------|
| DEQ PLANT ID CODE                                   | DEQ PROCESS CODE                  |       | DEQ STACK ID CODE |                    |      |
| DEQ BUILDING CODE                                   | PRIMARY SCC                       |       | SECONDARY SCC     |                    |      |
| DEQ SEGMENT CODE                                    |                                   |       |                   |                    |      |
| PART A: GENERAL INFORMA PROCESS CODE OR DESCRIPTION | TION<br>ON PROCESS PEELER EXHAUST |       |                   |                    |      |
| STACK DESCRIPTION                                   | POINT                             |       |                   |                    |      |
| BUILDING DESCRIPTION                                | PROCESSING PLANT BUILDING # 3     |       |                   |                    |      |
| MANUFACTURER                                        | ODENBURGE                         | MODEL | 1500              | DATE INSTALLED     | 1985 |
|                                                     |                                   |       |                   | DATE LAST MODIFIED | 1985 |
| PROCESSING DATA                                     |                                   |       |                   |                    |      |

| PROCESS STREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATERIAL            | MAXIMUM  | ACTUAL   | UNITS |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|----------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DESCRIPTION         | HOURLY   | HOURLY   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | RATE     | RATE     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |          |          |       |
| INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAW POTATOES        | 5,000.00 | 5,000.00 | LB/HR |
| Lance of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land |                     |          |          |       |
| PRODUCT OUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEELED RAW POTATOES | 4,999.84 | 4,999.84 | LB/HR |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   |          |          |       |
| WASTE OUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PARTICULATE         | 0.16     | 0.16     | LB/HR |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |          |          |       |
| RECYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NONE                |          |          |       |

| HAP DESCRIPTION | HAP CAS | FRACTION IN INPUT | FRACTION IN PRODUCT | FRACTION IN WASTE | FRACTION IN RECYCLE |
|-----------------|---------|-------------------|---------------------|-------------------|---------------------|
|                 | NUMBER  | STREAM BY WEIGHT  | STREAM BY WEIGHT    | STREAM BY WEIGHT  | STREAM BY WEIGHT    |
|                 |         |                   |                     |                   |                     |
| NONE            |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         | -                 |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   |                     |
|                 |         |                   |                     |                   | 1                   |

| SECTION 3 | PROCESS | AND | MANUFACTURING - | PART B |
|-----------|---------|-----|-----------------|--------|
|           |         |     |                 |        |

| SECTION 3, P       | ROCESS AND MANUFACTU   | RING - PART B PRO  | OCESS PEELER EX    | HAUST                 |              |                    |                            |  |
|--------------------|------------------------|--------------------|--------------------|-----------------------|--------------|--------------------|----------------------------|--|
| OPERATING I        | DATA                   |                    |                    |                       |              |                    |                            |  |
| PERCENT FU         | EL CONSUMPTION PER QUA | OPERATING S        | OPERATING SCHEDULE |                       |              |                    |                            |  |
| DEC-FEB            |                        |                    | HOURS/DAY          |                       | ]            |                    |                            |  |
| MAR-MAY            |                        |                    | DAY/WEEK           |                       | ]            |                    | *                          |  |
| JUN-AUG WEEKS/YEAR |                        |                    |                    |                       |              |                    |                            |  |
| SEP-NOV            |                        |                    |                    |                       |              |                    |                            |  |
| <u> </u>           |                        |                    |                    |                       |              |                    |                            |  |
| POLLUTION C        | CONTROL EQUIPMENT      |                    |                    |                       |              |                    | •                          |  |
| PARAMETER          | TYPE                   | PRIMARY            |                    |                       | SECONDAR'    | Y                  |                            |  |
| TYPE CODE (        | FROM APP. A)           |                    |                    |                       |              |                    |                            |  |
| MANUFACTUR         | RER                    |                    |                    |                       |              |                    |                            |  |
| MODEL NUME         | BER                    |                    |                    |                       |              |                    |                            |  |
| PRESSURE D         | ROP (IN: OF WATER)     |                    |                    |                       |              |                    |                            |  |
| WET SCRUBE         | BER FLOW (GPM)         |                    |                    |                       |              |                    |                            |  |
| BAGHOUSE A         | NR/CLOTH RATIO (FPM)   |                    |                    |                       |              |                    |                            |  |
| VENTILATION        | AND BUILDING/AREA DATA |                    | S                  | TACK DATA             |              |                    |                            |  |
| ENCLOSED ()        | (/N)? N                |                    | GROUND ELE         | VATION (FT)           |              | 4,498              |                            |  |
| HOOD TYPE (        | (FROM APP. B) NA       |                    | UTM X COORE        | DINATE (KM)           |              | 388                |                            |  |
| MINIMUM FLO        | W (ACFM) NA            |                    | UTM Y COORE        | DINATE (KM)           |              | 4,784              |                            |  |
| PERCENT CA         | PTURE EFFICIENCY NA    |                    | STACK TYPE (       | SEE NOTE BELOW)       | )            | 2                  |                            |  |
| BUILDING HE        | IGHT (FT)              | 16.5               | STACK EXIT H       | EIGHT FROM GROU       | JND LEVEL (F | T) 24              |                            |  |
| BUILDING/ARI       | EA LENGTH (FT)         | 65                 | STACK EXIT D       | IAMETER (FT)          |              |                    |                            |  |
| BUILDING/ARI       | EA WIDTH (FT)          | 60                 | STACK EXIT G       | AS FLOWRATE (AC       | FM)          | 38                 |                            |  |
|                    |                        |                    | STACK EXIT TO      | EMPERATURE (DEG       | 6. F)        | 190                |                            |  |
|                    |                        |                    |                    |                       |              |                    |                            |  |
|                    | NT EMISSIONS           |                    |                    |                       |              |                    |                            |  |
| POLLUTANT          | CAS NUMBER             | EMISSION<br>FACTOR | PERCENT<br>CONTROL | ESTIMATED OR MEASURED |              | ALLOWABLE EMISSION | s                          |  |
|                    |                        | (SEE BELOW)*       | EFFICIENCY         | EMISSIONS<br>(LBS/HR) | (LBS/HR)**   | (TONS/YR)          | REFERENCE                  |  |
| PM                 |                        | 0.000032           | 0                  | 0.16                  | NA           |                    |                            |  |
| PM-10              |                        | 0.000032           | 0                  | 0.16                  | 0.16         | 0.7                | Tier II OP No. 011-00027   |  |
|                    |                        |                    |                    | 1                     | 0.10         | 0.1                | 1.107 11 07 110. 011-00027 |  |
| SO2                |                        | NA NA              |                    | <u> </u>              | <u> </u>     |                    |                            |  |
| СО                 |                        | NA NA              |                    |                       |              |                    |                            |  |
| NOX                |                        | NA                 |                    |                       |              |                    |                            |  |

VOC

NA

<sup>\*</sup>EF from Mass Balance

NA \*\* Summation of fuel burning and particulate emissions.

| DEQ | USE | ONLY |  |
|-----|-----|------|--|
|     |     |      |  |

| DEQ PLANT ID CODE | DEQ PROCESS CODE | DEQ STACK ID CODE |
|-------------------|------------------|-------------------|
| DEQ BUILDING CODE | PRIMARY SCC      | SECONDARY SCC     |
| DEQ SEGMENT CODE  |                  |                   |

#### PART A: GENERAL INFORMATION

| PROCESS CODE OR DESCRIPTION | FLAKER NO. 1            |       |        |                    |      |
|-----------------------------|-------------------------|-------|--------|--------------------|------|
| STACK DESCRIPTION           | POINT                   |       |        |                    |      |
| BUILDING DESCRIPTION        | PROCESSING BUILDING # 4 |       |        |                    |      |
| MANUFACTURER                | BLAU-KNOX               | MODEL | 6 X 16 | DATE INSTALLED     | 1970 |
|                             |                         |       |        | DATE LAST MODIFIED | 1970 |

#### PROCESSING DATA

| PROCESS STREAM | MATERIAL    | MAXIMUM  | ACTUAL   | UNITS |
|----------------|-------------|----------|----------|-------|
|                | DESCRIPTION | HOURLY   | HOURLY   |       |
|                |             | RATE     | RATE     |       |
|                |             |          |          |       |
| INPUT          | POTATOES    | 1,250.00 | 1,250.00 | LB/HR |
|                | 1           |          |          |       |
| PRODUCT OUTPUT | POTATOES    | 1,246.21 | 1,246.21 | LB/HR |
|                | 1           |          |          | -     |
| WASTE OUTPUT   | PARTICULATE | 3.79     | 3.79     | LB/HR |
|                |             |          |          |       |
| RECYCLE        | NONE        |          |          |       |

| HAP DESCRIPTION | HAP CAS<br>NUMBER | FRACTION IN INPUT<br>STREAM BY WEIGHT            | FRACTION IN PRODUCT<br>STREAM BY WEIGHT | FRACTION IN WASTERACTION IN RECYCLE<br>STREAM BY WEIGHT STREAM BY WEIGHT |
|-----------------|-------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|
|                 | NUMBER            | STREAM BY WEIGHT                                 | STREAM BY WEIGHT                        | STREAM DI WEIGHT STREAM DI WEIGHT                                        |
| NONE            |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         | •                                                                        |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   | <del>                                     </del> |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |
|                 |                   |                                                  | *************************************** |                                                                          |
|                 |                   |                                                  |                                         |                                                                          |

| SECTION 3 | PROCESS AND | MANUFACTURING - | - PART B |
|-----------|-------------|-----------------|----------|

FLAKER 1

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |  |
|--------------------------------------|--------------------|-----|--|
| DEC-FEB 25                           | HOURS/DAY          | 24  |  |
| MAR-MAY 25                           | DAYWEEK            | 7   |  |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |  |
| SEP-NOV 25                           |                    |     |  |

## POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE PRIMARY NONE    | SECONDARY |
|--------------------------------|-----------|
| TYPE CODE (FROM APP. A)        |           |
| MANUFACTURER                   |           |
| MODEL NUMBER                   |           |
| PRESSURE DROP (IN. OF WATER)   |           |
| WET SCRUBBER FLOW (GPM)        |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |           |

#### VENTILATION AND BUILDING/AREA DATA

| STACK | $D\Delta T\Delta$ |
|-------|-------------------|

| STACKDATA                                |                                                                                                                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUND ELEVATION (FT)                    | 4,498                                                                                                                                                                                                |
| UTM X COORDINATE (KM)                    | 388                                                                                                                                                                                                  |
| UTM Y COORDINATE (KM)                    | 4,784                                                                                                                                                                                                |
| STACK TYPE (SEE NOTE BELOW)              | 2                                                                                                                                                                                                    |
| STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 54                                                                                                                                                                                                   |
| STACK EXIT DIAMETER (FT)                 | 3                                                                                                                                                                                                    |
| STACK EXIT GAS FLOWRATE (ACFM)           | 20,000                                                                                                                                                                                               |
| STACK EXIT TEMPERATURE (DEG. F)          | 120                                                                                                                                                                                                  |
|                                          | GROUND ELEVATION (FT)  UTM X COORDINATE (KM)  UTM Y COORDINATE (KM)  STACK TYPE (SEE NOTE BELOW)  STACK EXIT HEIGHT FROM GROUND LEVEL (FT)  STACK EXIT DIAMETER (FT)  STACK EXIT GAS FLOWRATE (ACFM) |

## AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | PERCENT    | ESTIMATED OR                      |            | ALLOWABLE EMI | SSIONS                   |
|-----------|------------|------------------------|------------|-----------------------------------|------------|---------------|--------------------------|
|           |            | FACTOR<br>(SEE BELOW)* | EFFICIENCY | MEASURED<br>EMISSIONS<br>(LBS/HR) | (LBS/HR)** | (TONS/YR)     | REFERENCE                |
|           |            | 0.003035               | 0          | 3.79375                           | l NA       |               |                          |
| PM        |            | 0.003033               |            | 0.13010                           | ING.       |               |                          |
| PM-10     |            | 0.003035               | 0          | 3.79375                           | 16.7       | 73.11         | Tier II OP No. 011-00027 |
|           |            |                        |            |                                   |            |               |                          |
| \$02      |            | NA                     |            |                                   |            |               |                          |
| CO        |            | NA                     |            |                                   |            |               |                          |
|           |            |                        |            |                                   |            |               |                          |
| NOX       |            | . NA                   |            |                                   |            |               |                          |
| VOC       |            | NA NA                  |            |                                   |            |               |                          |
|           |            |                        |            |                                   |            |               |                          |
| LEAD      |            | NA                     |            |                                   |            |               |                          |

<sup>\*</sup>EF from AP-42, Appndix B.9.9.1, 1986.

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

<sup>\*\*</sup> Summation of fuel burning and particulate emissions.

| DEQ USE ONLY      |                         |                           |                          |              |                    |      |
|-------------------|-------------------------|---------------------------|--------------------------|--------------|--------------------|------|
| DEQ PLANT ID CODE |                         | DEQ PROCESS CO            | DDE                      | DEQ STACK ID | CODE               |      |
| DEQ BUILDING CODE |                         | PRIMARY SCC               |                          | SECONDARY SO | cc                 |      |
| DEQ SEGMENT COD   | E                       |                           |                          |              |                    |      |
| PART A: GENERAL   | INFORMATION             |                           |                          |              |                    |      |
| PROCESS CODE OR   | DESCRIPTIC FLAKER NO    | D. 2                      |                          |              |                    |      |
| STACK DESCRIPTION | N POINT                 |                           |                          |              |                    |      |
| BUILDING DESCRIPT | ION PROCESSI            | NG BUILDING # 4           |                          |              |                    |      |
| MANUFACTURER      | BLAU-KNO                | x                         | MODEL                    | 6 X 16       | DATE INSTALLED     | 1970 |
|                   |                         |                           |                          |              | DATE LAST MODIFIED | 1970 |
| PROCESSING DATA   |                         |                           |                          |              |                    |      |
| PROCESS STREAM    | MATERIAL<br>DESCRIPTION | MAXIMUM<br>HOURLY<br>RATE | ACTUAL<br>HOURLY<br>RATE | UNITS        |                    |      |
| INPUT             | POTATOES                | 1,250.00                  | 1,250.00                 | LB/HR        |                    |      |
| PRODUCT OUTPUT    | POTATOES                | 1,246.21                  | 1,246.21                 | LB/HR        |                    |      |
| WASTE OUTPUT      | PARTICULATE             | 3.79                      | 3.79                     | LB/HR        |                    |      |
| RECYCLE           | NONE                    |                           |                          |              |                    |      |
|                   |                         |                           |                          |              |                    |      |

| HAP DESCRIPTION | HAP CAS | FRACTION IN INPUT FRACTION IN PRODUC FRACTION IN WASSACTION IN RECYCLE |
|-----------------|---------|------------------------------------------------------------------------|
|                 | NUMBER  | STREAM BY WEIGHT STREAM BY WEIGHT STREAM BY WEIGHT                     |
|                 |         |                                                                        |
| NONE            |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |
|                 |         |                                                                        |

## SECTION 3, PROCESS AND MANUFACTURING - PART B FLAKER 2

#### OPERATING DATA

| PERCENT FUEL CONSUMPTION PER QUARTER | OPERATING SCHEDULE |     |
|--------------------------------------|--------------------|-----|
| DEC-FEB 25                           | HOURS/DAY          | 24  |
| MAR-MAY 25                           | DAYWEEK            | 7   |
| JUN-AUG 25                           | WEEKS/YEAR         | 365 |
| SEP-NOV 25                           |                    |     |

#### POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY NONE | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              | · ·       |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

#### VENTILATION AND BUILDING/AREA DATA

#### STACK DATA

| VENTILATION AND BUILDING  | KEA DATA | GIAGREATA                                |        |
|---------------------------|----------|------------------------------------------|--------|
| ENCLOSED (Y/N)?           | N        | GROUND ELEVATION (FT)                    | 4,498  |
| HOOD TYPE (FROM APP. B)   | NA       | UTM X COORDINATE (KM)                    | 388    |
| MINIMUM FLOW (ACFM)       | NA       | UTM Y COORDINATE (KM)                    | 4,784  |
| PERCENT CAPTURE EFFICIEN  | CYNA     | STACK TYPE (SEE NOTE BELOW)              | 2      |
| BUILDING HEIGHT (FT)      | 16.5     | STACK EXIT HEIGHT FROM GROUND LEVEL (FT) | 54     |
| BUILDING/AREA LENGTH (FT) | 100      | STACK EXIT DIAMETER (FT)                 | 3      |
| BUILDING/AREA WIDTH (FT)  | 60       | STACK EXIT GAS FLOWRATE (ACFM)           | 20,000 |
|                           |          | STACK EXIT TEMPERATURE (DEG. F)          | 120    |
|                           |          |                                          |        |

#### AIR POLLUTANT EMISSIONS

| POLLUTANT | CAS NUMBER | EMISSION               | PERCENT                               | ESTIMATED OR          | L          | ALLOWABLE EM | ISSIONS                  |
|-----------|------------|------------------------|---------------------------------------|-----------------------|------------|--------------|--------------------------|
|           |            | FACTOR<br>(SEE BELOW)* | CONTROL<br>EFFICIENCY                 | MEASURED<br>EMISSIONS | (LBS/HR)** | (TONS/YR)    | REFERENCE                |
|           |            |                        |                                       | (LBS/HR)              |            |              |                          |
| PM        |            | 0.003035               | 0                                     | 3,79375               | l NA       |              |                          |
| 1 141     |            |                        | <u> </u>                              |                       |            |              |                          |
| PM-10     |            | 0.003035               | 0                                     | 3,79375               | 16.7       | 73.11        | Tier II OP No. 011-00027 |
|           |            |                        |                                       | ,                     |            |              |                          |
| SO2       |            | NA NA                  |                                       |                       | l .        |              |                          |
|           |            |                        |                                       |                       | ı          | T            |                          |
| CO        |            | NA -                   |                                       |                       |            | l            |                          |
| NOX       |            | NA                     |                                       |                       |            |              |                          |
|           |            |                        |                                       |                       |            |              |                          |
| VOC       |            | NA                     |                                       |                       |            |              |                          |
|           |            | T                      | · · · · · · · · · · · · · · · · · · · | 1                     | 1          |              |                          |
| LEAD      |            | NA NA                  | l hurning and particula               |                       |            |              |                          |

NOTE: STACK TYPE - 01) DOWNWARD; 02) VERTICAL (UNCOVERED); 03) VERTICAL (COVERED); 04) HORIZONTAL; 05) FUGITIVE

| DEQ USE ONLY       |                     |                   |          |                |                    |      |
|--------------------|---------------------|-------------------|----------|----------------|--------------------|------|
| DEQ PLANT ID CODE  |                     | DEQ PROCESS CO    | DE       | DEQ STACK ID C | ODE                |      |
| DEQ BUILDING CODE  |                     | PRIMARY SCC       |          | SECONDARY SC   | С                  |      |
| DEQ SEGMENT CODE   |                     |                   |          |                |                    |      |
| PART A: GENERAL    | INFORMATION         |                   |          |                |                    |      |
| PROCESS CODE OR    | DESCRIPTIC FLAKER I | NO. 3             |          |                |                    |      |
| STACK DESCRIPTION  | POINT               |                   |          |                |                    |      |
| BUILDING DESCRIPTI | ON PROCESS          | SING BUILDING # 4 |          |                |                    |      |
| MANUFACTURER       | BLAU-KN             | OX                | MODEL    | 5 X 16         | DATE INSTALLED     | 1970 |
|                    |                     |                   |          |                | DATE LAST MODIFIED | 1970 |
| PROCESSING DATA    |                     |                   |          |                |                    |      |
| PROCESS STREAM     | MATERIAL            | MAXIMUM           | ACTUAL   | UNITS          |                    |      |
|                    | DESCRIPTION         | HOURLY            | HOURLY   | .              |                    |      |
|                    |                     | RATE              | RATE     |                |                    |      |
| INPUT              | POTATOES            | 1,000.00          | 1,000.00 | LB/HR          |                    |      |
| INFOI              | TOTATOLO            | 1,                |          |                |                    |      |
| PRODUCT OUTPUT     | POTATOES            | 996.96            | 996.96   | LB/HR          |                    |      |
| WASTE OUTPUT       | PARTICULATE         | 3.04              | 3.04     | LB/HR          |                    |      |
|                    |                     |                   |          | 1              |                    |      |
| RECYCLE            | NONE                |                   |          |                |                    |      |

| HAP DESCRIPTION | HAP CAS  | FRACTION IN IN | PUT FRACTION IN PRO   | DDUCFRACTION IN WARRACTION IN RECYCLE |
|-----------------|----------|----------------|-----------------------|---------------------------------------|
|                 | NUMBER   | STREAM BY WE   | IGHT STREAM BY WEIGHT | STREAM BY WEIGHT                      |
|                 |          |                |                       |                                       |
| NONE            |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 | <u> </u> |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 |          |                |                       |                                       |
|                 | 1        |                |                       |                                       |

# OPERATING DATA PERCENT FUEL CONSUMPTION PER QUARTER

25 DEC-FEB MAR-MAY 25

25 JUN-AUG

25 SEP-NOV

# OPERATING SCHEDULE

HOURS/DAY 24 DAY/WEEK

365 WEEKS/YEAR

## POLLUTION CONTROL EQUIPMENT

| PARAMETER TYPE                 | PRIMARY NONE | SECONDARY |
|--------------------------------|--------------|-----------|
| TYPE CODE (FROM APP. A)        |              |           |
| MANUFACTURER                   |              |           |
| MODEL NUMBER                   |              |           |
| PRESSURE DROP (IN. OF WATER)   |              |           |
| WET SCRUBBER FLOW (GPM)        |              |           |
| BAGHOUSE AIR/CLOTH RATIO (FPM) |              |           |

## VENTILATION AND BUILDING/AREA DATA

ENCLOSED (Y/N)?

# N

NA HOOD TYPE (FROM APP. B) MINIMUM FLOW (ACFM) NA

PERCENT CAPTURE EFFICIENCY NA BUILDING HEIGHT (FT) 16.5

BUILDING/AREA LENGTH (FT) 100 BUILDING/AREA WIDTH (FT) 60

#### STACK DATA

| GROUND ELEVATION (FT)               | 4,498   |
|-------------------------------------|---------|
|                                     |         |
| UTM X COORDINATE (KM)               | 388     |
|                                     |         |
| UTM Y COORDINATE (KM)               | 4,784   |
|                                     |         |
| STACK TYPE (SEE NOTE BELOW)         | 2       |
|                                     |         |
| STACK EXIT HEIGHT FROM GROUND LEVEL | (FT) 45 |
|                                     |         |
| STACK EXIT DIAMETER (FT)            | 3       |
|                                     |         |
| STACK EXIT GAS FLOWRATE (ACFM)      | 20,000  |
|                                     |         |
| STACK EXIT TEMPERATURE (DEG. F)     | 120     |
|                                     |         |

## AIR POLLUTANT EMISSIONS

| OLLUTANT | CAS NUMBER | EMISSION     | PERCENT    | ESTIMATE  | D OR       | ALLOWABLE EMI | 2210112                  |
|----------|------------|--------------|------------|-----------|------------|---------------|--------------------------|
| OLLUTANT | I          | FACTOR       | CONTROL    | MEASURE   |            |               | ·                        |
|          |            | (SEE BELOW)* | EFFICIENCY | EMISSIONS | (LBS/HR)** | (TONS/YR)     | REFERENCE                |
|          |            | ,            |            | (LBS/HR)  |            |               |                          |
|          |            |              |            |           |            |               |                          |
| PM       |            | 0.003035     | 0          | 3.035     | NA         |               |                          |
|          |            |              |            |           | 107        | 73.11         | Tier II OP No. 011-00027 |
| PM-10    |            | 0.003035     | 0          | 3.035     | 16.7       | 73.11         | THE IT OF THE, OTT COUL. |
|          |            |              |            |           |            |               |                          |
| SO2      |            | NA           |            |           | <u> </u>   |               |                          |
|          |            |              |            |           |            |               |                          |
| co       |            | NA           |            |           | <u> </u>   | l             |                          |
|          |            |              |            |           |            |               |                          |
| NOX      |            | NA           |            |           |            |               |                          |
|          |            |              |            |           |            |               |                          |
| voc      |            | NA           |            |           |            |               |                          |
|          |            |              |            |           |            |               |                          |
|          |            |              |            |           |            |               |                          |

<sup>\*</sup>EF from AP-42, Appndix B.9.9.1, 1986.

<sup>\*\*</sup> Summation of fuel burning and particulate emissions.

| DEQ USE ONLY      |              |                  |                 |          |                   |                         |
|-------------------|--------------|------------------|-----------------|----------|-------------------|-------------------------|
| DEQ PLANT ID CODE |              |                  | DEQ PROCESS COL | DE       | DEQ STACK ID CODE |                         |
| DEQ BUILDING CODE |              |                  | PRIMARY SCC     |          | SECONDARY SCC     |                         |
| DEQ SEGMENT COD   | E            |                  |                 |          |                   |                         |
| PART A: GENERAL   | . INFORMATIO | ON               |                 |          |                   |                         |
| PROCESS CODE OR   | DESCRIPTIO   | FLAKER NO. 4     |                 |          |                   |                         |
| STACK DESCRIPTION | 1            | POINT            |                 |          |                   |                         |
| BUILDING DESCRIPT | ION          | PROCESSING BUILI | DING # 4        |          |                   |                         |
| MANUFACTURER      |              | BLAU-KNOX        |                 | MODEL    | 5 X 16            | DATE INSTALLED 1970     |
|                   |              |                  |                 |          |                   | DATE LAST MODIFIED 1970 |
| PROCESSING DATA   |              |                  |                 |          |                   |                         |
| PROCESS STREAM    | MATERIAL     |                  | MAXIMUM         | ACTUAL   | UNITS             | 7                       |
|                   | DESCRIPT     | ION              | HOURLY          | HOURLY   |                   |                         |
|                   |              |                  | RATE            | RATE     |                   |                         |
| INPUT             | POTATOES     | 3                | 1,000.00        | 1,000.00 | LB/HR             |                         |
|                   |              |                  |                 | 1        | Louis             | <b>¬</b>                |
| PRODUCT OUTPUT    | POTATOES     | 3                | 996.96          | 996.96   | LB/HR             |                         |
| WASTE OUTPUT      | PARTICULA    | ATE              | 3.04            | 3.04     | LB/HR             |                         |
| RECYCLE           | NONE         |                  |                 |          |                   |                         |
|                   | -            |                  |                 |          |                   |                         |

| HAP DESCRIPTION | HAP CAS  | FRACTION IN INPUT FRACTION IN PRODUC FRACTION IN WASSARCTION IN RECYCLE |
|-----------------|----------|-------------------------------------------------------------------------|
|                 | NUMBER   | STREAM BY WEIGHT STREAM BY WEIGHT STREAM BY WEIGHT                      |
|                 |          |                                                                         |
| NONE            |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          | ·                                                                       |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 | <u> </u> |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |
|                 |          |                                                                         |